module Data.Colist where
open import Category.Monad
open import Coinduction
open import Data.Bool using (Bool; true; false)
open import Data.Empty using (⊥)
open import Data.Maybe using (Maybe; nothing; just)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Conat using (Coℕ; zero; suc)
open import Data.List using (List; []; _∷_)
open import Data.List.NonEmpty using (List⁺; _∷_)
renaming ([_] to [_]⁺)
open import Data.BoundedVec.Inefficient as BVec
using (BoundedVec; []; _∷_)
open import Data.Product using (_,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function
open import Level using (_⊔_)
open import Relation.Binary
import Relation.Binary.InducedPreorders as Ind
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Nullary
open import Relation.Nullary.Negation
open RawMonad (¬¬-Monad {p = Level.zero})
infixr 5 _∷_
data Colist {a} (A : Set a) : Set a where
[] : Colist A
_∷_ : (x : A) (xs : ∞ (Colist A)) → Colist A
{-# IMPORT Data.FFI #-}
{-# COMPILED_DATA Colist Data.FFI.AgdaList [] (:) #-}
data Any {a p} {A : Set a} (P : A → Set p) :
Colist A → Set (a ⊔ p) where
here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P (♭ xs)) → Any P (x ∷ xs)
data All {a p} {A : Set a} (P : A → Set p) :
Colist A → Set (a ⊔ p) where
[] : All P []
_∷_ : ∀ {x xs} (px : P x) (pxs : ∞ (All P (♭ xs))) → All P (x ∷ xs)
null : ∀ {a} {A : Set a} → Colist A → Bool
null [] = true
null (_ ∷ _) = false
length : ∀ {a} {A : Set a} → Colist A → Coℕ
length [] = zero
length (x ∷ xs) = suc (♯ length (♭ xs))
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Colist A → Colist B
map f [] = []
map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs)
fromList : ∀ {a} {A : Set a} → List A → Colist A
fromList [] = []
fromList (x ∷ xs) = x ∷ ♯ fromList xs
take : ∀ {a} {A : Set a} (n : ℕ) → Colist A → BoundedVec A n
take zero xs = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n (♭ xs)
replicate : ∀ {a} {A : Set a} → Coℕ → A → Colist A
replicate zero x = []
replicate (suc n) x = x ∷ ♯ replicate (♭ n) x
lookup : ∀ {a} {A : Set a} → ℕ → Colist A → Maybe A
lookup n [] = nothing
lookup zero (x ∷ xs) = just x
lookup (suc n) (x ∷ xs) = lookup n (♭ xs)
infixr 5 _++_
_++_ : ∀ {a} {A : Set a} → Colist A → Colist A → Colist A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys)
concat : ∀ {a} {A : Set a} → Colist (List⁺ A) → Colist A
concat [] = []
concat ([ x ]⁺ ∷ xss) = x ∷ ♯ concat (♭ xss)
concat ((x ∷ xs) ∷ xss) = x ∷ ♯ concat (xs ∷ xss)
[_] : ∀ {a} {A : Set a} → A → Colist A
[ x ] = x ∷ ♯ []
infix 4 _≈_
data _≈_ {a} {A : Set a} : (xs ys : Colist A) → Set a where
[] : [] ≈ []
_∷_ : ∀ x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ x ∷ ys
setoid : ∀ {ℓ} → Set ℓ → Setoid _ _
setoid A = record
{ Carrier = Colist A
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
refl : Reflexive _≈_
refl {[]} = []
refl {x ∷ xs} = x ∷ ♯ refl
sym : Symmetric _≈_
sym [] = []
sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈)
trans : Transitive _≈_
trans [] [] = []
trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈)
module ≈-Reasoning where
import Relation.Binary.EqReasoning as EqR
private
open module R {a} {A : Set a} = EqR (setoid A) public
map-cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) → _≈_ =[ map f ]⇒ _≈_
map-cong f [] = []
map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈)
infix 4 _∈_
_∈_ : ∀ {a} → {A : Set a} → A → Colist A → Set a
x ∈ xs = Any (_≡_ x) xs
infix 4 _⊆_
_⊆_ : ∀ {a} → {A : Set a} → Colist A → Colist A → Set a
xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys
infix 4 _⊑_
data _⊑_ {a} {A : Set a} : Colist A → Colist A → Set a where
[] : ∀ {ys} → [] ⊑ ys
_∷_ : ∀ x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → x ∷ xs ⊑ x ∷ ys
⊑⇒⊆ : ∀ {a} → {A : Set a} → _⊑_ {A = A} ⇒ _⊆_
⊑⇒⊆ [] ()
⊑⇒⊆ (x ∷ xs⊑ys) (here ≡x) = here ≡x
⊑⇒⊆ (_ ∷ xs⊑ys) (there x∈xs) = there (⊑⇒⊆ (♭ xs⊑ys) x∈xs)
⊑-Poset : ∀ {ℓ} → Set ℓ → Poset _ _ _
⊑-Poset A = record
{ Carrier = Colist A
; _≈_ = _≈_
; _≤_ = _⊑_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = Setoid.isEquivalence (setoid A)
; reflexive = reflexive
; trans = trans
}
; antisym = antisym
}
}
where
reflexive : _≈_ ⇒ _⊑_
reflexive [] = []
reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈)
trans : Transitive _⊑_
trans [] _ = []
trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈)
antisym : Antisymmetric _≈_ _⊑_
antisym [] [] = []
antisym (x ∷ p₁) (.x ∷ p₂) = x ∷ ♯ antisym (♭ p₁) (♭ p₂)
module ⊑-Reasoning where
import Relation.Binary.PartialOrderReasoning as POR
private
open module R {a} {A : Set a} = POR (⊑-Poset A)
public renaming (_≤⟨_⟩_ to _⊑⟨_⟩_)
⊆-Preorder : ∀ {ℓ} → Set ℓ → Preorder _ _ _
⊆-Preorder A =
Ind.InducedPreorder₂ (setoid A) _∈_
(λ xs≈ys → ⊑⇒⊆ (⊑P.reflexive xs≈ys))
where module ⊑P = Poset (⊑-Poset A)
module ⊆-Reasoning where
import Relation.Binary.PreorderReasoning as PreR
private
open module R {a} {A : Set a} = PreR (⊆-Preorder A)
public renaming (_∼⟨_⟩_ to _⊆⟨_⟩_)
infix 1 _∈⟨_⟩_
_∈⟨_⟩_ : ∀ {a} {A : Set a} (x : A) {xs ys} →
x ∈ xs → xs IsRelatedTo ys → x ∈ ys
x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs
take-⊑ : ∀ {a} {A : Set a} n (xs : Colist A) →
let toColist = fromList {a} ∘ BVec.toList in
toColist (take n xs) ⊑ xs
take-⊑ zero xs = []
take-⊑ (suc n) [] = []
take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ n (♭ xs)
data Finite {a} {A : Set a} : Colist A → Set a where
[] : Finite []
_∷_ : ∀ x {xs} (fin : Finite (♭ xs)) → Finite (x ∷ xs)
data Infinite {a} {A : Set a} : Colist A → Set a where
_∷_ : ∀ x {xs} (inf : ∞ (Infinite (♭ xs))) → Infinite (x ∷ xs)
not-finite-is-infinite :
∀ {a} {A : Set a} (xs : Colist A) → ¬ Finite xs → Infinite xs
not-finite-is-infinite [] hyp with hyp []
... | ()
not-finite-is-infinite (x ∷ xs) hyp =
x ∷ ♯ not-finite-is-infinite (♭ xs) (hyp ∘ _∷_ x)
finite-or-infinite :
{A : Set} (xs : Colist A) → ¬ ¬ (Finite xs ⊎ Infinite xs)
finite-or-infinite xs = helper <$> excluded-middle
where
helper : Dec (Finite xs) → Finite xs ⊎ Infinite xs
helper (yes fin) = inj₁ fin
helper (no ¬fin) = inj₂ $ not-finite-is-infinite xs ¬fin
not-finite-and-infinite :
∀ {a} {A : Set a} {xs : Colist A} → Finite xs → Infinite xs → ⊥
not-finite-and-infinite [] ()
not-finite-and-infinite (x ∷ fin) (.x ∷ inf) =
not-finite-and-infinite fin (♭ inf)