------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to negation
------------------------------------------------------------------------

module Relation.Nullary.Negation where

open import Relation.Nullary
open import Relation.Unary
open import Data.Bool
open import Data.Empty
open import Function
open import Data.Product as Prod
open import Data.Fin using (Fin)
open import Data.Fin.Dec
open import Data.Sum as Sum
open import Category.Monad
open import Level

contradiction :  {p w} {P : Set p} {Whatever : Set w} 
                P  ¬ P  Whatever
contradiction p ¬p = ⊥-elim (¬p p)

contraposition :  {p q} {P : Set p} {Q : Set q} 
                 (P  Q)  ¬ Q  ¬ P
contraposition f ¬q p = contradiction (f p) ¬q

-- Note also the following use of flip:

private
  note :  {p q} {P : Set p} {Q : Set q} 
         (P  ¬ Q)  Q  ¬ P
  note = flip

-- If we can decide P, then we can decide its negation.

¬? :  {p} {P : Set p}  Dec P  Dec (¬ P)
¬? (yes p) = no  ¬p  ¬p p)
¬? (no ¬p) = yes ¬p

------------------------------------------------------------------------
-- Quantifier juggling

∃⟶¬∀¬ :  {a p} {A : Set a} {P : A  Set p} 
         P  ¬ (∀ x  ¬ P x)
∃⟶¬∀¬ = flip uncurry

∀⟶¬∃¬ :  {a p} {A : Set a} {P : A  Set p} 
        (∀ x  P x)  ¬  λ x  ¬ P x
∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x)

¬∃⟶∀¬ :  {a p} {A : Set a} {P : A  Set p} 
        ¬   x  P x)   x  ¬ P x
¬∃⟶∀¬ = curry

∀¬⟶¬∃ :  {a p} {A : Set a} {P : A  Set p} 
        (∀ x  ¬ P x)  ¬   x  P x)
∀¬⟶¬∃ = uncurry

∃¬⟶¬∀ :  {a p} {A : Set a} {P : A  Set p} 
          x  ¬ P x)  ¬ (∀ x  P x)
∃¬⟶¬∀ = flip ∀⟶¬∃¬

-- When P is a decidable predicate over a finite set the following
-- lemma can be proved.

¬∀⟶∃¬ :  n {p} (P : Fin n  Set p)  Decidable P 
        ¬ (∀ i  P i)   λ i  ¬ P i
¬∀⟶∃¬ n P dec ¬P = Prod.map id proj₁ $ ¬∀⟶∃¬-smallest n P dec ¬P

------------------------------------------------------------------------
-- Double-negation

¬¬-map :  {p q} {P : Set p} {Q : Set q} 
         (P  Q)  ¬ ¬ P  ¬ ¬ Q
¬¬-map f = contraposition (contraposition f)

-- Stability under double-negation.

Stable :  {}  Set   Set 
Stable P = ¬ ¬ P  P

-- Everything is stable in the double-negation monad.

stable :  {p} {P : Set p}  ¬ ¬ Stable P
stable ¬[¬¬p→p] = ¬[¬¬p→p]  ¬¬p  ⊥-elim (¬¬p (¬[¬¬p→p]  const)))

-- Negated predicates are stable.

negated-stable :  {p} {P : Set p}  Stable (¬ P)
negated-stable ¬¬¬P P = ¬¬¬P  ¬P  ¬P P)

-- Decidable predicates are stable.

decidable-stable :  {p} {P : Set p}  Dec P  Stable P
decidable-stable (yes p) ¬¬p = p
decidable-stable (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p)

¬-drop-Dec :  {p} {P : Set p}  Dec (¬ ¬ P)  Dec (¬ P)
¬-drop-Dec (yes ¬¬p) = no ¬¬p
¬-drop-Dec (no ¬¬¬p) = yes (negated-stable ¬¬¬p)

-- Double-negation is a monad (if we assume that all elements of ¬ ¬ P
-- are equal).

¬¬-Monad :  {p}  RawMonad  (P : Set p)  ¬ ¬ P)
¬¬-Monad = record
  { return = contradiction
  ; _>>=_  = λ x f  negated-stable (¬¬-map f x)
  }

¬¬-push :  {p q} {P : Set p} {Q : P  Set q} 
          ¬ ¬ ((x : P)  Q x)  (x : P)  ¬ ¬ Q x
¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q  P⟶Q  ¬Q (P⟶Q P))

-- A double-negation-translated variant of excluded middle (or: every
-- nullary relation is decidable in the double-negation monad).

excluded-middle :  {p} {P : Set p}  ¬ ¬ Dec P
excluded-middle ¬h = ¬h (no  p  ¬h (yes p)))

-- If Whatever is instantiated with ¬ ¬ something, then this function
-- is call with current continuation in the double-negation monad, or,
-- if you will, a double-negation translation of Peirce's law.
--
-- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However,
-- sometimes it is nice to avoid leaving the double-negation monad; in
-- that case this function can be used (with Whatever instantiated to
-- ⊥).

call/cc :  {w p} {Whatever : Set w} {P : Set p} 
          ((P  Whatever)  ¬ ¬ P)  ¬ ¬ P
call/cc hyp ¬p = hyp  p  ⊥-elim (¬p p)) ¬p

-- The "independence of premise" rule, in the double-negation monad.
-- It is assumed that the index set (Q) is inhabited.

independence-of-premise
  :  {p q r} {P : Set p} {Q : Set q} {R : Q  Set r} 
    Q  (P  Σ Q R)  ¬ ¬ (Σ[ x  Q ] (P  R x))
independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle
  where
  helper : Dec P  _
  helper (yes p) = Prod.map id const (f p)
  helper (no ¬p) = (q , ⊥-elim ∘′ ¬p)

-- The independence of premise rule for binary sums.

independence-of-premise-⊎
  :  {p q r} {P : Set p} {Q : Set q} {R : Set r} 
    (P  Q  R)  ¬ ¬ ((P  Q)  (P  R))
independence-of-premise-⊎ {P = P} f = ¬¬-map helper excluded-middle
  where
  helper : Dec P  _
  helper (yes p) = Sum.map const const (f p)
  helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p)

private

  -- Note that independence-of-premise-⊎ is a consequence of
  -- independence-of-premise (for simplicity it is assumed that Q and
  -- R have the same type here):

  corollary :  {p } {P : Set p} {Q R : Set } 
              (P  Q  R)  ¬ ¬ ((P  Q)  (P  R))
  corollary {P = P} {Q} {R} f =
    ¬¬-map helper (independence-of-premise
                     true ([ _,_ true , _,_ false ] ∘′ f))
    where
    helper :   b  P  if b then Q else R)  (P  Q)  (P  R)
    helper (true  , f) = inj₁ f
    helper (false , f) = inj₂ f

-- The classical statements of excluded middle and double-negation
-- elimination.

Excluded-Middle : ( : Level)  Set (suc )
Excluded-Middle p = {P : Set p}  Dec P

Double-Negation-Elimination : ( : Level)  Set (suc )
Double-Negation-Elimination p = {P : Set p}  Stable P

private

  -- The two statements above are equivalent. The proofs are so
  -- simple, given the definitions above, that they are not exported.

  em⇒dne :  {}  Excluded-Middle   Double-Negation-Elimination 
  em⇒dne em = decidable-stable em

  dne⇒em :  {}  Double-Negation-Elimination   Excluded-Middle 
  dne⇒em dne = dne excluded-middle