------------------------------------------------------------------------
-- Properties related to Fin, and operations making use of these
-- properties (or other properties not available in Data.Fin)
------------------------------------------------------------------------

module Data.Fin.Props where

open import Data.Fin
open import Data.Nat as N
  using (; zero; suc; s≤s; z≤n)
  renaming (_≤_ to _ℕ≤_; _<_ to _ℕ<_; _+_ to _ℕ+_)
open N.≤-Reasoning
import Data.Nat.Properties as N
open import Data.Function
open import Relation.Nullary
open import Relation.Unary
open import Relation.Binary
open import Relation.Binary.FunctionSetoid
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl; cong; subst)
open import Category.Functor
open import Category.Applicative

------------------------------------------------------------------------
-- Properties

private
  drop-suc :  {o} {m n : Fin o} 
             suc m  (Fin (suc o)  suc n)  m  n
  drop-suc refl = refl

preorder :   Preorder
preorder n = PropEq.preorder (Fin n)

setoid :   Setoid
setoid n = PropEq.setoid (Fin n)

strictTotalOrder :   StrictTotalOrder
strictTotalOrder n = record
  { carrier            = Fin n
  ; _≈_                = _≡_
  ; _<_                = _<_
  ; isStrictTotalOrder = record
    { isEquivalence = PropEq.isEquivalence
    ; trans         = N.<-trans
    ; compare       = cmp
    ; <-resp-≈      = PropEq.resp₂ _<_
    }
  }
  where
  cmp :  {n}  Trichotomous _≡_ (_<_ {n})
  cmp zero    zero    = tri≈ (λ())     refl  (λ())
  cmp zero    (suc j) = tri< (s≤s z≤n) (λ()) (λ())
  cmp (suc i) zero    = tri> (λ())     (λ()) (s≤s z≤n)
  cmp (suc i) (suc j) with cmp i j
  ... | tri<  lt ¬eq ¬gt = tri< (s≤s lt)         (¬eq  drop-suc) (¬gt  N.≤-pred)
  ... | tri> ¬lt ¬eq  gt = tri> (¬lt  N.≤-pred) (¬eq  drop-suc) (s≤s gt)
  ... | tri≈ ¬lt  eq ¬gt = tri≈ (¬lt  N.≤-pred) (cong suc eq)    (¬gt  N.≤-pred)

decSetoid :   DecSetoid
decSetoid n = StrictTotalOrder.decSetoid (strictTotalOrder n)

infix 4 _≟_

_≟_ : {n : }  Decidable {Fin n} _≡_
_≟_ {n} = DecSetoid._≟_ (decSetoid n)

to-from :  n  toℕ (fromℕ n)  n
to-from zero    = refl
to-from (suc n) = cong suc (to-from n)

bounded :  {n} (i : Fin n)  toℕ i ℕ< n
bounded zero    = s≤s z≤n
bounded (suc i) = s≤s (bounded i)

prop-toℕ-≤ :  {n} (x : Fin n)  toℕ x ℕ≤ N.pred n
prop-toℕ-≤ zero                 = z≤n
prop-toℕ-≤ (suc {n = zero}  ())
prop-toℕ-≤ (suc {n = suc n} i)  = s≤s (prop-toℕ-≤ i)

nℕ-ℕi≤n :  n i  n ℕ-ℕ i ℕ≤ n
nℕ-ℕi≤n n       zero     = begin n 
nℕ-ℕi≤n zero    (suc ())
nℕ-ℕi≤n (suc n) (suc i)  = begin
  n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i 
  n       ≤⟨ N.n≤1+n n 
  suc n   

inject-lemma :  {n} {i : Fin n} (j : Fin′ i) 
               toℕ (inject j)  toℕ j
inject-lemma {i = zero}  ()
inject-lemma {i = suc i} zero    = refl
inject-lemma {i = suc i} (suc j) = cong suc (inject-lemma j)

inject+-lemma :  m k  m  toℕ (inject+ k (fromℕ m))
inject+-lemma zero    k = refl
inject+-lemma (suc m) k = cong suc (inject+-lemma m k)

inject₁-lemma :  {m} (i : Fin m)  toℕ (inject₁ i)  toℕ i
inject₁-lemma zero    = refl
inject₁-lemma (suc i) = cong suc (inject₁-lemma i)

inject≤-lemma :  {m n} (i : Fin m) (le : m ℕ≤ n) 
                toℕ (inject≤ i le)  toℕ i
inject≤-lemma zero    (N.s≤s le) = refl
inject≤-lemma (suc i) (N.s≤s le) = cong suc (inject≤-lemma i le)

≺⇒<′ : _≺_  N._<′_
≺⇒<′ (n ≻toℕ i) = N.≤⇒≤′ (bounded i)

<′⇒≺ : N._<′_  _≺_
<′⇒≺ {n} N.≤′-refl    = subst  i  i  suc n) (to-from n)
                              (suc n ≻toℕ fromℕ n)
<′⇒≺ (N.≤′-step m≤′n) with <′⇒≺ m≤′n
<′⇒≺ (N.≤′-step m≤′n) | n ≻toℕ i =
  subst  i  i  suc n) (inject₁-lemma i) (suc n ≻toℕ (inject₁ i))

------------------------------------------------------------------------
-- Operations

infixl 6 _+′_

_+′_ :  {m n} (i : Fin m) (j : Fin n)  Fin (N.pred m ℕ+ n)
i +′ j = inject≤ (i + j) (N._+-mono_ (prop-toℕ-≤ i) ≤-refl)
  where open Poset N.poset renaming (refl to ≤-refl)

-- reverse {n} "i" = "n ∸ 1 ∸ i".

reverse :  {n}  Fin n  Fin n
reverse {zero}  ()
reverse {suc n} i  = inject≤ (n ℕ- i) (N.n∸m≤n (toℕ i) (suc n))

-- If there is an injection from a set to a finite set, then equality
-- of the set can be decided.

eq? :  {S n} 
      Injection S (PropEq.setoid (Fin n))  Decidable (Setoid._≈_ S)
eq? inj x y with to ⟨$⟩ x  to ⟨$⟩ y where open Injection inj
... | yes tox≡toy = yes (Injection.injective inj tox≡toy)
... | no  tox≢toy = no  (tox≢toy  pres (Injection.to inj))

-- Quantification over finite sets commutes with applicative functors.

sequence :  {F n} {P : Pred (Fin n)}  RawApplicative F 
           (∀ i  F (P i))  F (∀ i  P i)
sequence {F} RA = helper _ _
  where
  open RawApplicative RA

  helper :  n (P : Pred (Fin n))  (∀ i  F (P i))  F (∀ i  P i)
  helper zero    P ∀iPi = pure (λ())
  helper (suc n) P ∀iPi =
    combine <$> ∀iPi zero  helper n  n  P (suc n)) (∀iPi  suc)
    where
    combine : P zero  (∀ i  P (suc i))   i  P i
    combine z s zero    = z
    combine z s (suc i) = s i

private

  -- Included just to show that sequence above has an inverse (under
  -- an equivalence relation with two equivalence classes, one with
  -- all inhabited sets and the other with all uninhabited sets).

  sequence⁻¹ :  {F A} {P : Pred A}  RawFunctor F 
               F (∀ i  P i)   i  F (P i)
  sequence⁻¹ RF F∀iPi i =  f  f i) <$> F∀iPi
    where open RawFunctor RF