module Relation.Binary.FunctionSetoid where
open import Data.Function
open import Relation.Binary
infixr 0 _↝_ _⟶_ _⇨_ _≡⇨_
_↝_ : ∀ {A B} → (∼₁ : Rel A) (∼₂ : Rel B) → Rel (A → B)
_∼₁_ ↝ _∼₂_ = λ f g → ∀ {x y} → x ∼₁ y → f x ∼₂ g y
record _⟶_ (From To : Setoid) : Set where
open Setoid
infixl 5 _⟨$⟩_
field
_⟨$⟩_ : carrier From → carrier To
pres : _⟨$⟩_ Preserves _≈_ From ⟶ _≈_ To
open _⟶_ public
↝-isEquivalence : ∀ {A B C} {∼₁ : Rel A} {∼₂ : Rel B}
(fun : C → (A → B)) →
(∀ f → fun f Preserves ∼₁ ⟶ ∼₂) →
IsEquivalence ∼₁ → IsEquivalence ∼₂ →
IsEquivalence ((∼₁ ↝ ∼₂) on₁ fun)
↝-isEquivalence _ pres eq₁ eq₂ = record
{ refl = λ {f} x∼₁y → pres f x∼₁y
; sym = λ f∼g x∼y → sym eq₂ (f∼g (sym eq₁ x∼y))
; trans = λ f∼g g∼h x∼y → trans eq₂ (f∼g (refl eq₁)) (g∼h x∼y)
} where open IsEquivalence
_⇨_ : Setoid → Setoid → Setoid
S₁ ⇨ S₂ = record
{ carrier = S₁ ⟶ S₂
; _≈_ = (_≈_ S₁ ↝ _≈_ S₂) on₁ _⟨$⟩_
; isEquivalence =
↝-isEquivalence _⟨$⟩_ pres (isEquivalence S₁) (isEquivalence S₂)
} where open Setoid; open _⟶_
≡↝ : ∀ {A} {B : A → Set} → (∀ x → Rel (B x)) → Rel ((x : A) → B x)
≡↝ R = λ f g → ∀ x → R x (f x) (g x)
≡↝-isEquivalence : {A : Set} {B : A → Set} {R : ∀ x → Rel (B x)} →
(∀ x → IsEquivalence (R x)) → IsEquivalence (≡↝ R)
≡↝-isEquivalence eq = record
{ refl = λ _ → refl
; sym = λ f∼g x → sym (f∼g x)
; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x)
} where open module Eq {x} = IsEquivalence (eq x)
_≡⇨_ : (A : Set) → (A → Setoid) → Setoid
A ≡⇨ S = record
{ carrier = (x : A) → carrier (S x)
; _≈_ = ≡↝ (λ x → _≈_ (S x))
; isEquivalence = ≡↝-isEquivalence (λ x → isEquivalence (S x))
} where open Setoid