------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
------------------------------------------------------------------------
-- Example use:
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) =
-- begin
-- suc n * 0
-- ≈⟨ byDef ⟩
-- n * 0 + 0
-- ≈⟨ n+0≡n _ ⟩
-- n * 0
-- ≈⟨ n*0≡0 n ⟩
-- 0
-- ∎
open import Relation.Binary
module Relation.Binary.EqReasoning (s : Setoid) where
open Setoid s
import Relation.Binary.PreorderReasoning as PreR
open PreR preorder public
renaming ( _∼⟨_⟩_ to _≈⟨_⟩_
; _≈⟨_⟩_ to _≡⟨_⟩_
)