open import Relation.Binary
module Relation.Binary.On where
open import Function
open import Data.Product
private
module Dummy {a b} {A : Set a} {B : Set b} (f : B → A) where
implies : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) →
≈ ⇒ ∼ → (≈ on f) ⇒ (∼ on f)
implies _ _ impl = impl
reflexive : ∀ {ℓ} (∼ : Rel A ℓ) → Reflexive ∼ → Reflexive (∼ on f)
reflexive _ refl = refl
irreflexive : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) →
Irreflexive ≈ ∼ → Irreflexive (≈ on f) (∼ on f)
irreflexive _ _ irrefl = irrefl
symmetric : ∀ {ℓ} (∼ : Rel A ℓ) → Symmetric ∼ → Symmetric (∼ on f)
symmetric _ sym = sym
transitive : ∀ {ℓ} (∼ : Rel A ℓ) → Transitive ∼ → Transitive (∼ on f)
transitive _ trans = trans
antisymmetric : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) →
Antisymmetric ≈ ≤ → Antisymmetric (≈ on f) (≤ on f)
antisymmetric _ _ antisym = antisym
asymmetric : ∀ {ℓ} (< : Rel A ℓ) → Asymmetric < → Asymmetric (< on f)
asymmetric _ asym = asym
respects : ∀ {ℓ p} (∼ : Rel A ℓ) (P : A → Set p) →
P Respects ∼ → (P ∘ f) Respects (∼ on f)
respects _ _ resp = resp
respects₂ : ∀ {ℓ₁ ℓ₂} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) →
∼₁ Respects₂ ∼₂ → (∼₁ on f) Respects₂ (∼₂ on f)
respects₂ _ _ (resp₁ , resp₂) =
((λ {_} {_} {_} → resp₁) , λ {_} {_} {_} → resp₂)
decidable : ∀ {ℓ} (∼ : Rel A ℓ) → Decidable ∼ → Decidable (∼ on f)
decidable _ dec = λ x y → dec (f x) (f y)
total : ∀ {ℓ} (∼ : Rel A ℓ) → Total ∼ → Total (∼ on f)
total _ tot = λ x y → tot (f x) (f y)
trichotomous : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (< : Rel A ℓ₂) →
Trichotomous ≈ < → Trichotomous (≈ on f) (< on f)
trichotomous _ _ compare = λ x y → compare (f x) (f y)
isEquivalence : ∀ {ℓ} {≈ : Rel A ℓ} →
IsEquivalence ≈ → IsEquivalence (≈ on f)
isEquivalence {≈ = ≈} eq = record
{ refl = reflexive ≈ Eq.refl
; sym = symmetric ≈ Eq.sym
; trans = transitive ≈ Eq.trans
}
where module Eq = IsEquivalence eq
isPreorder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} →
IsPreorder ≈ ∼ → IsPreorder (≈ on f) (∼ on f)
isPreorder {≈ = ≈} {∼} pre = record
{ isEquivalence = isEquivalence Pre.isEquivalence
; reflexive = implies ≈ ∼ Pre.reflexive
; trans = transitive ∼ Pre.trans
}
where module Pre = IsPreorder pre
isDecEquivalence : ∀ {ℓ} {≈ : Rel A ℓ} →
IsDecEquivalence ≈ → IsDecEquivalence (≈ on f)
isDecEquivalence {≈ = ≈} dec = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = decidable ≈ Dec._≟_
}
where module Dec = IsDecEquivalence dec
isPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsPartialOrder ≈ ≤ →
IsPartialOrder (≈ on f) (≤ on f)
isPartialOrder {≈ = ≈} {≤} po = record
{ isPreorder = isPreorder Po.isPreorder
; antisym = antisymmetric ≈ ≤ Po.antisym
}
where module Po = IsPartialOrder po
isDecPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsDecPartialOrder ≈ ≤ →
IsDecPartialOrder (≈ on f) (≤ on f)
isDecPartialOrder dpo = record
{ isPartialOrder = isPartialOrder DPO.isPartialOrder
; _≟_ = decidable _ DPO._≟_
; _≤?_ = decidable _ DPO._≤?_
}
where module DPO = IsDecPartialOrder dpo
isStrictPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} →
IsStrictPartialOrder ≈ < →
IsStrictPartialOrder (≈ on f) (< on f)
isStrictPartialOrder {≈ = ≈} {<} spo = record
{ isEquivalence = isEquivalence Spo.isEquivalence
; irrefl = irreflexive ≈ < Spo.irrefl
; trans = transitive < Spo.trans
; <-resp-≈ = respects₂ < ≈ Spo.<-resp-≈
}
where module Spo = IsStrictPartialOrder spo
isTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsTotalOrder ≈ ≤ →
IsTotalOrder (≈ on f) (≤ on f)
isTotalOrder {≈ = ≈} {≤} to = record
{ isPartialOrder = isPartialOrder To.isPartialOrder
; total = total ≤ To.total
}
where module To = IsTotalOrder to
isDecTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsDecTotalOrder ≈ ≤ →
IsDecTotalOrder (≈ on f) (≤ on f)
isDecTotalOrder {≈ = ≈} {≤} dec = record
{ isTotalOrder = isTotalOrder Dec.isTotalOrder
; _≟_ = decidable ≈ Dec._≟_
; _≤?_ = decidable ≤ Dec._≤?_
}
where module Dec = IsDecTotalOrder dec
isStrictTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} →
IsStrictTotalOrder ≈ < →
IsStrictTotalOrder (≈ on f) (< on f)
isStrictTotalOrder {≈ = ≈} {<} sto = record
{ isEquivalence = isEquivalence Sto.isEquivalence
; trans = transitive < Sto.trans
; compare = trichotomous ≈ < Sto.compare
; <-resp-≈ = respects₂ < ≈ Sto.<-resp-≈
}
where module Sto = IsStrictTotalOrder sto
open Dummy public
preorder : ∀ {p₁ p₂ p₃ b} {B : Set b} (P : Preorder p₁ p₂ p₃) →
(B → Preorder.Carrier P) → Preorder _ _ _
preorder P f = record
{ isPreorder = isPreorder f (Preorder.isPreorder P)
}
setoid : ∀ {s₁ s₂ b} {B : Set b} (S : Setoid s₁ s₂) →
(B → Setoid.Carrier S) → Setoid _ _
setoid S f = record
{ isEquivalence = isEquivalence f (Setoid.isEquivalence S)
}
decSetoid : ∀ {d₁ d₂ b} {B : Set b} (D : DecSetoid d₁ d₂) →
(B → DecSetoid.Carrier D) → DecSetoid _ _
decSetoid D f = record
{ isDecEquivalence = isDecEquivalence f (DecSetoid.isDecEquivalence D)
}
poset : ∀ {p₁ p₂ p₃ b} {B : Set b} (P : Poset p₁ p₂ p₃) →
(B → Poset.Carrier P) → Poset _ _ _
poset P f = record
{ isPartialOrder = isPartialOrder f (Poset.isPartialOrder P)
}
decPoset : ∀ {d₁ d₂ d₃ b} {B : Set b} (D : DecPoset d₁ d₂ d₃) →
(B → DecPoset.Carrier D) → DecPoset _ _ _
decPoset D f = record
{ isDecPartialOrder =
isDecPartialOrder f (DecPoset.isDecPartialOrder D)
}
strictPartialOrder :
∀ {s₁ s₂ s₃ b} {B : Set b} (S : StrictPartialOrder s₁ s₂ s₃) →
(B → StrictPartialOrder.Carrier S) → StrictPartialOrder _ _ _
strictPartialOrder S f = record
{ isStrictPartialOrder =
isStrictPartialOrder f (StrictPartialOrder.isStrictPartialOrder S)
}
totalOrder : ∀ {t₁ t₂ t₃ b} {B : Set b} (T : TotalOrder t₁ t₂ t₃) →
(B → TotalOrder.Carrier T) → TotalOrder _ _ _
totalOrder T f = record
{ isTotalOrder = isTotalOrder f (TotalOrder.isTotalOrder T)
}
decTotalOrder :
∀ {d₁ d₂ d₃ b} {B : Set b} (D : DecTotalOrder d₁ d₂ d₃) →
(B → DecTotalOrder.Carrier D) → DecTotalOrder _ _ _
decTotalOrder D f = record
{ isDecTotalOrder = isDecTotalOrder f (DecTotalOrder.isDecTotalOrder D)
}
strictTotalOrder :
∀ {s₁ s₂ s₃ b} {B : Set b} (S : StrictTotalOrder s₁ s₂ s₃) →
(B → StrictTotalOrder.Carrier S) → StrictTotalOrder _ _ _
strictTotalOrder S f = record
{ isStrictTotalOrder =
isStrictTotalOrder f (StrictTotalOrder.isStrictTotalOrder S)
}