------------------------------------------------------------------------
-- The Agda standard library
--
-- Some boring lemmas used by the ring solver
------------------------------------------------------------------------

-- Note that these proofs use all "almost commutative ring" properties
-- except for zero and -‿cong.

open import Algebra
open import Algebra.RingSolver.AlmostCommutativeRing

module Algebra.RingSolver.Lemmas
  {r₁ r₂ r₃}
  (coeff : RawRing r₁)
  (r : AlmostCommutativeRing r₂ r₃)
  (morphism : coeff -Raw-AlmostCommutative⟶ r)
  where

private
  module C = RawRing coeff
open AlmostCommutativeRing r
open import Algebra.Morphism
open _-Raw-AlmostCommutative⟶_ morphism
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Function
open import Data.Product

lemma₀ :  x  x +  C.0#   x
lemma₀ x = begin
  x +  C.0#   ≈⟨ refl  +-cong  0-homo 
  x + 0#        ≈⟨ proj₂ +-identity _ 
  x             

lemma₁ :  a b c d x 
         (a + b) * x + (c + d)  (a * x + c) + (b * x + d)
lemma₁ a b c d x = begin
  (a + b) * x + (c + d)      ≈⟨ proj₂ distrib _ _ _  +-cong  refl 
  (a * x + b * x) + (c + d)  ≈⟨ +-assoc _ _ _ 
  a * x + (b * x + (c + d))  ≈⟨ refl  +-cong  sym (+-assoc _ _ _) 
  a * x + ((b * x + c) + d)  ≈⟨ refl  +-cong  (+-comm _ _  +-cong  refl) 
  a * x + ((c + b * x) + d)  ≈⟨ refl  +-cong  +-assoc _ _ _ 
  a * x + (c + (b * x + d))  ≈⟨ sym $ +-assoc _ _ _ 
  (a * x + c) + (b * x + d)  

lemma₂ :  x y z  x + (y + z)  y + (x + z)
lemma₂ x y z = begin
  x + (y + z)  ≈⟨ sym $ +-assoc _ _ _ 
  (x + y) + z  ≈⟨ +-comm _ _  +-cong  refl 
  (y + x) + z  ≈⟨ +-assoc _ _ _ 
  y + (x + z)  

lemma₃ :  a b c x  a * c * x + b * c  (a * x + b) * c
lemma₃ a b c x = begin
  a * c * x + b * c  ≈⟨ lem  +-cong  refl 
  a * x * c + b * c  ≈⟨ sym $ proj₂ distrib _ _ _ 
  (a * x + b) * c    
  where
  lem = begin
    a * c * x    ≈⟨ *-assoc _ _ _ 
    a * (c * x)  ≈⟨ refl  *-cong  *-comm _ _ 
    a * (x * c)  ≈⟨ sym $ *-assoc _ _ _ 
    a * x * c    

lemma₄ :  a b c x  a * b * x + a * c  a * (b * x + c)
lemma₄ a b c x = begin
  a * b * x + a * c    ≈⟨ *-assoc _ _ _  +-cong  refl 
  a * (b * x) + a * c  ≈⟨ sym $ proj₁ distrib _ _ _ 
  a * (b * x + c)      

lemma₅ :  a b c d x 
         a * c * x * x + ((a * d + b * c) * x + b * d) 
         (a * x + b) * (c * x + d)
lemma₅ a b c d x = begin
  a * c * x * x +
  ((a * d + b * c) * x + b * d)          ≈⟨ lem₁  +-cong 
                                            (lem₂  +-cong  refl) 
  a * x * (c * x) +
  (a * x * d + b * (c * x) + b * d)      ≈⟨ refl  +-cong  +-assoc _ _ _ 
  a * x * (c * x) +
  (a * x * d + (b * (c * x) + b * d))    ≈⟨ sym $ +-assoc _ _ _ 
  a * x * (c * x) + a * x * d +
  (b * (c * x) + b * d)                  ≈⟨ sym $ proj₁ distrib _ _ _
                                                   +-cong 
                                                proj₁ distrib _ _ _ 
  a * x * (c * x + d) + b * (c * x + d)  ≈⟨ sym $ proj₂ distrib _ _ _ 
  (a * x + b) * (c * x + d)              
  where
  lem₁' = begin
    a * c * x    ≈⟨ *-assoc _ _ _ 
    a * (c * x)  ≈⟨ refl  *-cong  *-comm _ _ 
    a * (x * c)  ≈⟨ sym $ *-assoc _ _ _ 
    a * x * c    

  lem₁ = begin
    a * c * x * x    ≈⟨ lem₁'  *-cong  refl 
    a * x * c * x    ≈⟨ *-assoc _ _ _ 
    a * x * (c * x)  

  lem₂ = begin
    (a * d + b * c) * x        ≈⟨ proj₂ distrib _ _ _ 
    a * d * x + b * c * x      ≈⟨ *-assoc _ _ _  +-cong  *-assoc _ _ _ 
    a * (d * x) + b * (c * x)  ≈⟨ (refl  *-cong  *-comm _ _)
                                     +-cong  refl 
    a * (x * d) + b * (c * x)  ≈⟨ sym $ *-assoc _ _ _  +-cong  refl 
    a * x * d + b * (c * x)    

lemma₆ :  a b x  - a * x + - b  - (a * x + b)
lemma₆ a b x = begin
  - a * x + - b    ≈⟨ -‿*-distribˡ _ _  +-cong  refl 
  - (a * x) + - b  ≈⟨ -‿+-comm _ _ 
  - (a * x + b)    

lemma₇ :  x   C.1#  * x +  C.0#   x
lemma₇ x = begin
   C.1#  * x +  C.0#   ≈⟨ (1-homo  *-cong  refl)  +-cong  0-homo 
  1# * x + 0#              ≈⟨ proj₂ +-identity _ 
  1# * x                   ≈⟨ proj₁ *-identity _ 
  x