------------------------------------------------------------------------ -- Convenient syntax for equational reasoning ------------------------------------------------------------------------ -- Example use: -- n*0≡0 : ∀ n → n * 0 ≡ 0 -- n*0≡0 zero = refl -- n*0≡0 (suc n) = -- begin -- suc n * 0 -- ≈⟨ byDef ⟩ -- n * 0 + 0 -- ≈⟨ n+0≡n _ ⟩ -- n * 0 -- ≈⟨ n*0≡0 n ⟩ -- 0 -- ∎ open import Relation.Binary module Relation.Binary.EqReasoning (s : Setoid) where open Setoid s import Relation.Binary.PreorderReasoning as PreR open PreR preorder public renaming ( _∼⟨_⟩_ to _≈⟨_⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ )