module Algebra.RingSolver.AlmostCommutativeRing where
open import Relation.Binary
open import Algebra
open import Algebra.Structures
open import Algebra.FunctionProperties
open import Algebra.Morphism
open import Data.Function
record IsAlmostCommutativeRing {A} (_≈_ : Rel A)
(_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set where
field
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
-‿pres-≈ : -_ Preserves _≈_ ⟶ _≈_
-‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y))
-‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y))
open IsCommutativeSemiring isCommutativeSemiring public
record AlmostCommutativeRing : Set₁ where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
carrier : Set
_≈_ : Rel carrier
_+_ : Op₂ carrier
_*_ : Op₂ carrier
-_ : Op₁ carrier
0# : carrier
1# : carrier
isAlmostCommutativeRing :
IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsAlmostCommutativeRing isAlmostCommutativeRing public
commutativeSemiring : CommutativeSemiring
commutativeSemiring =
record { isCommutativeSemiring = isCommutativeSemiring }
open CommutativeSemiring commutativeSemiring public
using ( setoid
; +-semigroup; +-monoid; +-commutativeMonoid
; *-semigroup; *-monoid; *-commutativeMonoid
; semiring
)
rawRing : RawRing
rawRing = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
_-Raw-AlmostCommutative⟶_ : RawRing → AlmostCommutativeRing → Set
from -Raw-AlmostCommutative⟶ to = from -RawRing⟶ rawRing to
where open AlmostCommutativeRing
-raw-almostCommutative⟶
: ∀ r →
AlmostCommutativeRing.rawRing r -Raw-AlmostCommutative⟶ r
-raw-almostCommutative⟶ r = record
{ ⟦_⟧ = id
; +-homo = λ _ _ → refl
; *-homo = λ _ _ → refl
; -‿homo = λ _ → refl
; 0-homo = refl
; 1-homo = refl
}
where open AlmostCommutativeRing r
fromCommutativeRing : CommutativeRing → AlmostCommutativeRing
fromCommutativeRing cr = record
{ isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿pres-≈ = -‿pres-≈
; -‿*-distribˡ = -‿*-distribˡ
; -‿+-comm = -‿∙-comm
}
}
where
open CommutativeRing cr
import Algebra.Props.Ring as R; open R ring
import Algebra.Props.AbelianGroup as AG; open AG +-abelianGroup
fromCommutativeSemiring : CommutativeSemiring → AlmostCommutativeRing
fromCommutativeSemiring cs = record
{ -_ = id
; isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿pres-≈ = id
; -‿*-distribˡ = λ _ _ → refl
; -‿+-comm = λ _ _ → refl
}
}
where open CommutativeSemiring cs