A Clash Course in Solving
Sudoku

Gerg0 Erdi

https://unsafePerform.10/

Haskell Symposium 2025
16t October 2025.

PP VOOV Ve

https://unsafePerform.IO/

Orientation

Sudoku: Combinatorial puzzle
Richard Bird 2006.: Derivation of a nice Sudoku solver in Haskell
FPGA: Field-programmable gate array

Clash: Compile Haskell to FPGA configuration

2/ 24

Orientation

Sudoku: Combinatorial puzzle

Richard Bird 2006.: Derivation of a nice Sudoku solver in Haskell
FPGA: Field-programmable gate array

Clash: Compile Haskell to FPGA configuration

This pearl: A Sudoku solver FPGA described in Clash, based on
Bird's implementation

2/ 24

Sudoku

.yo I'd solve it

(b) ..

(a) If there was a problem ...

3/24

(n, m)-Sudoku

(@) (3,4)-Sudoku

(b) (2,6)-Sudoku

L/ 2L

Clash in one slide

Register transfer-level description of synchronous digital circuits:

X

reg

- clk

type Signal :: Domain — Type — Type
register :: a — Signal dom a — Signal dom a
instance Applicative (Signal dom)

y :: Signal dom (Unsigned 5)
y = register 19 (fun §) x (9 y) - Note the recursion guarded by register
5/

A program to solve Sudoku (Richard Bird 2006.)

Classic backtracking algorithm:
* For each cell, keep track of candidate values.
* Prune canditate values by propagating known values.
* If can't prune more, try guesses.

* If some cell has no more possible values, we're blocked;
backtrack.

6 /24

A program to solve Sudoku (Bird 2006.) rewritten

type Sudoku :: Nat — Nat — Type

sudoku :: (Alternative f) = Sudoku n m — f (Sudoku n m)
sudoku grid

| blocked = empty

| complete = pure grid

| changed = sudoku pruned

| otherwise = asum [sudoku grid' | grid' < expand grid]
where

--blocked, complete, changed, pruned ..

expand :: Sudoku n m — [Sudoku n m]

7/ 24

A program to solve Sudoku (Bird 2006.) rewritten

type Sudoku :: Nat — Nat — Type

sudoku :: Sudoku n m — Maybe (Sudoku n m)
sudoku grid

| blocked = empty

| complete = pure grid

| changed = sudoku pruned

| otherwise = asum [sudoku grid' | grid' < expand grid]
where

--blocked, complete, changed, pruned ..

expand :: Sudoku n m — [Sudoku n m]

7/ 24

Towards hardware: fixed-size representations

type Vec :: Nat — Type — Type --From Clash standard library

newtype Matrix n m a = FromRows (Vec n (Vec m a))
newtype Grid nma = Grid (Matrix nm (Matrix mn a))

type BitVector :: Nat — Type --From Clash standard library

newtype Cell nm = Cell {cellBits :: BitVector (n*m)}
type Sudokunm=Gridnm (Cell nm)

8/ 24

Single-valued Cells for pruning

newtype Mask n m = Mask {maskBits :: BitVector (n*m)}

cellMask :: Bool — Cell nm — Mask nm
cellMask isSingle (Cellc) =
if isSingle then Mask c else mempty

We pass isSingle as a parameter because we want to avoid repeatedly
recomputing it for the same Cell

9 /24

Propagation: pruning is @ monoidal action

instance Semigroup (BitMask n m) where
Mask m1 ¢ Mask m2 = Mask (m1 .. m2)

instance Monoid (BitMask n m) where
mempty = Mask zeroBits

act :: Mask nm — Bool — Cell nm — Cellnm
act (Mask m) isSingle ¢ =

if isSingle then c else Cell (cellBits c .&. complement m)

10 / 24

Groups: the constraint structure of Sudoku

type Group nma = Vec (n*m) a

A Grouping witnesses the isomorphism between a Grid and a collection of
M groups:

type Groups nma=Vec (n*m) (Groupnma)
type Groupingnm =V a.Gridnma<>Groupsnma

data a<>b = Iso {embed :: a — b,project :: b — a}

rows, cols, boxs :: Grouping n m

11/ 24

Folding over Groups

Each cell belongs to three groups: a row, a column, and a box. To fold
groupwise, we compute the combination of all values in each group. Then for
each position, we combine the three combined results.

foldGroups :: V a n m. (Monoid a) = Gridnma — Grid nm a
foldGroups = foldBy rows ¢ foldBy cols ¢ foldBy boxs

where
foldBy grp = project grp o fmap (repeat o fold) o embed grp

For the case of foldGroups @(Mask n m), this is constraint propagation!

12 / 24

foldBy rows

si6i 6l s 6
RGP S ELE S
7 T EEFREEEREEN REERRPERR
5. .ss 4 4s.ias ias laseia 4
T 3 3 3RS EA
s | se 4 s i s is laseias fas
T 3 T T T
foldBy cols
5. .ss . g eliloel | eli i ciilatle
5 iy 3 3 (A S S M 1
s | se 4 s | sei 6ias
77 3 3 7T 3 3
5,56 4 RN S Y3 NPT
ity 3 3 g 3 3
s | se 4 s | seis ias
TT T
s ios ios llaile iy
L A S R B
s is la ia ia
T
foldBy boxs e e
gy Ty ey
6i i
I
s is is

13/ 24

foldBy cols

1 T2 B
SSRSTTTOR SOSTPOOON OO OO0 OO0 T SOOI 7. SO
i i B

5 56 :
1 12 3
ST OSTRRULION: OO0 OO X T NP . S
1 12 3]

5 56 i
T T2 3!
b ios L osel o ia
i 2 BE

5 56
T2 112 112 BE 3

14 / 24

12 112 :12 3 3: 3

15/ 24

Two-way branching

expand :: Sudoku n m — [Sudoku n m]

when we need to guess, we can expand the current grid into just two:

expand :: Sudoku n m — (Sudoku n m, Sudoku n m)
Select a currently ambiguous Cell:

splitCell :: Cellnm — (Cell nm,Cell nm)

* The first guess clears all but one bits of the chosen Cell

* The continuation is the grid without that one bit

16 / 24

Hardware-friendly splitCell

splitCell :: Cellnm — (Cell nm,Cell nm)
splitCell (Cell c) = (Cell least,Cell rest)

where
least = leastSetBit c
rest = c .&. complement least

leastSetBit :: BitVector n — BitVector n
leastSetBit x = x .&. negate x

(See Brent Yorgey's Fenwick tree pearl in JFP)

17 / 24

Hardware-friendly splitCell

splitCell :: Cellnm — (Cell nm,Cell nm)
splitCell (Cell c) = (Cell least,Cell rest)

where
least = leastSetBit c
rest = c .&. complement least

leastSetBit :: BitVector n — BitVector n
leastSetBit x = x .&. negate x

(See Brent Yorgey's Fenwick tree pearl in JFP)
N.b. rest == 0 exactly means isSingle c!

17 / 24

Recursion
Our definition of sudoku now looks like this:

sudoku :: Sudoku n m — Maybe (Sudoku n m)
sudoku grid

| blocked = empty

| complete = pure grid

| changed = sudoku pruned -- Tail-recursive

| otherwise = sudoku guess () sudoku cont - Non-tail-recursive
where

This is not a valid Clash function, since it describes a circuit of unbounded size:

all recursive occurrences of sudoku contain a copy of the circuit.
18 / 24

Opening up the recursion

data Step n m = Blocked
| Complete
| Progress (Sudoku n m)
| Stuck (Sudoku n m) (Sudoku n m)

solve :: Sudoku nm — Stepnm

We will do one Step (i.e. full propagation of all immediate constraints) per
clock cycle.

19 / 24

Explicit stack (list model)

sudoku grid = go grid []
where
go :: Sudoku n m — [Sudoku n m] — Maybe (Sudoku n m)
go grid st = case solve grid of

Blocked
| (grid' :st') < st — go grid' st' -- POp
| otherwise — empty

Complete — pure grid

Progress pruned — go pruned st

Stuck guess cont — go guess (cont:st) --Push

20/ 24

Stack implemented with RAM

on real hardware, we use synchronous block RAM to implement the stack:

data MemCmd n d = Write (Index n) d | Read (Index n)
ram :: Signal dom (Maybe (MemCmd n d)) — Signal dom (Maybe d)

Each "stack frame” is just a Sudoku n m board.
Guessing always creates one more unambiguous Cell, and we never add
more candidates to Cells, only ever remove them: max stack depth is fixed at

n2m2, the size of the board.
type StackPtr = Index (n*mxm#*n)
The solver keeps a StackPtr state, updated when Blocked (to pop) or

Stuck (to push).
21/ 24

1/0
Our Sudoku solver is a standalone device usable over a serial link.
Problem descriptions are read from serial input cell by cell; solution is sent
over serial with whitespace formatting:

.2.19.8] 4 95 63
87 .1 . .11 .54 6 2 95 4
5.6 14. .1 .1 596 47 218
______ il AL L L
2R [.l .95 312 46 795
ATV A 4% 768 519 342
94 .| . | 8 9 45 32 861
______ el oo o
.8 .1 ..41]5 289 164 73
13402 .4 | 137 295 486
o |l 36 71 654 387 29

22/ 24

Serial interface

Using the clash-protocols library, we can compose the parser and

formatter with the Sudoku solver’s controller.

rx € —

tx ©—

UART

Parser

I

Formatter

serialize is the UART equivalent of software Haskell’'s interact function:

serialize @9600 (parser[>controller @3 @3> formatter)

Controller

Solver

:: Signal dom Bit — Signal dom Bit

Stack

23/ 24

Results

» Software testing: Haskell for pure functions (for unit testing) and Clash's
simulator (for integration testing)

* Most (3,3)-Sudoku boards solved in less than 100 cycles, some "hard”
puzzles take thousands of cycles

* Real hardware target: Xilinx XC7A50T at 100 MHz (tens of us solving time
for hard puzzles)

* Vivado synthesizes it in about 10 minutes, uses 9,298 / 32,600 logic cells
for (3,3) solver, 25,978 cells for (3,4).

https://unsafePerform.l0/clash-sudoku

24 / 24

https://unsafePerform.IO/clash-sudoku

