
An Adventure in Symbolic Execution (extended abstract)
Gergő Érdi

Standard Chartered Bank
gergo@erdi.hu

ABSTRACT
ScottCheck is a verifier for text adventure games based on symbolic
execution. Its implementation is based on an idiomatic concrete
interpreter written in Haskell. Even though Haskell is a general-
purpose functional language, the changes required to transform it
into a symbolic interpreter turned out to be fairly small.

ACM Reference Format:
Gergő Érdi. 2020. An Adventure in Symbolic Execution (extended abstract).
In Proceedings of International Symposium on Implementation and Application
of Functional Languages (IFL ’20). ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Interactive fiction is a format of computer programs that can broadly
be described as a textual back-and-forth between a human player
and an automated world simulation. A subset of them, text adven-
ture games, are characterized by having explicit win and failure
states, tracing their lineage back to 1976’s Colossal Cave Adventure.
The usual implementation strategy of text adventure games is to
use a domain-specific language for describing the specifics of indi-
vidual game worlds, and then create interpreters for this language,
targeting whatever platforms the game is to be released on.

An adventure game is essentially a puzzle, and a puzzle that has
no solution can be a frustrating experience for the player. Starting
from the initial state, there should always be a way to get to a
winning state.

We can use symbolic execution of the game world description
to check if there is a sequence of player inputs that result in a win-
ning end state. One approach is to take an off-the-shelf interpreter,
and compile it into symbolically executed code: our interest in this
topic was sparked by previous work[3] in which the scottfree
interpreter, itself is written in C, is compiled with SymCC[6] into
symbolic form. Another possible approach would be to implement
the interpreter in an environment with ambient symbolic evalua-
tion, such as Rosette[8].

Our work explores the low-tech approach of using the general-
purpose functional programming language Haskell, implementing a

Gergő Érdi is employed by Standard Chartered Bank. This paper has been created in a
personal capacity and Standard Chartered Bank does not accept liability for its content.
Views expressed in this paper do not necessarily represent the views of Standard
Chartered Bank.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’20, September 2020, The Internet,
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

concrete interpreter idiomatically, and then changing it just enough
to be able to execute it symbolically and pass it to an SMT solver
to find input that satisfies the winning condition.

2 STRUCTURE AND INTERPRETATION OF
ADVENTURE GAMES

Following previous work in [3], we focus on the format of Scott
Adams’s text adventure games, originating from his first game,
1978’s Adventureland. The game world is modeled as a space of
discrete rooms, connected with each other in the six cardinal direc-
tions. Each room comes with a textual description to present to the
player. The rooms also contain items, which are objects the player
can manipulate. Most notably, items can be moved around either
directly by the player (by taking them, moving to another room
and dropping them), or by various world simulation events.

Beside the data describing rooms, their connections, items, and
their starting locations, the game files also contain scripts in a
simple language. Each script line consists of a set of conditions (e.g.
is item #4 currently in the same room as the player character?) and a
sequence of instructions (e.g. swap locations of items #5 and #2).

Player input is processed by parsing against two small dictio-
naries of verbs and nouns. Script lines can either be automatic,
executing in every turn regardless of user input; or keyed to some
combination of a verb and a noun index.

Unlike more elaborate winning conditions in other games, the
Scott Adams adventure games all uniformly use the concept of
collecting treasure items as the goal. One room is marked as the
treasury; the SCORE command shows the current number of trea-
sures in the treasury, and finishes the game if it is equal to the
number of all treasure items in the game.

3 MONAD TRANSFORMERS FOR CONCRETE
INTERPRETERS

The concrete interpreter is based on the traditional stack of monad
transformers[4]: a Reader giving access to the world description,
aWriter collecting the output messages, and a State consisting of
the current item locations, including the location of the player-
controlled avatar:

type GameData = ...

data St = St
{currentRoom :: Int16
, itemLocations :: Array Int16 Int16
}

type Engine = ReaderT GameData (WriterT [String] (State S))
Each turn of the game takes three steps: world simulation, user

input, then response to the player input. This means the interaction
model itself is monadic as well: the player can see all previous
output before deciding on their next input. We implement this

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL ’20, September 2020, The Internet,
Gergő Érdi

structure by doing the first and the third step inside Engine. This
means we have a purely functional core, with an external, thin layer
of IO only to take care of showing output and getting input.

4 SYMBOLIC EXECUTION AND PUZZLE
TESTING

To turn the interpreter into a solver, we change it from concrete to
symbolic execution. SBV[2] is a Haskell library providing types that
support symbolic evaluation. The resulting symbolic constraints are
then passed to an SMT solver; in our case, we use the open-source
solver Z3[1].

This code transformation is surprisingly straightforward and
painless. The solver-specific parts begin only after the game data has
been read and parsed; we can keep the parser as-is. The interpreter
state is changed to use SBV’s symbolic types (prefixed with an S):

data S = S
{currentRoom :: SInt16
, itemLocations :: Array Int16 SInt16
} deriving (Generic,Mergeable)

Here, SInt16 is SBV’s 16-bit integer type. itemLocations is still
a static array of symbolic values, since the set of items remains
constant during play-through for a given game: only the locations
of items (i.e. the elements of the array) change. We let data-generic
instance deriving[5] write the instance for SBV’s Mergeable type-
class; this typeclass enables branching in symbolic results, which
is crucial when interpreting conditions that check item locations.

Arithmetic works without change, since SBV types implement
the Num typeclass. Because in standard Haskell, operators like ==
are not overloaded in their return type, the Boolean operators have
SBV-specific versions.

This takes care of data. For control, we can write Mergeable
instances for ReaderT , WriterT and State since these are all just
typed wrappers around bog-standard function types. This allows
us to define symbolic versions of combinators like when, or case
with literal matches. Thus, we can build up the kit that enables
writing quite straightforward monadic code, just by replacing some
combinators with their symbolic counterpart. Here’s an example of
the code that runs a list of instruction codes in the context of their
conditions; even without seeing any other definitions, it should be
fairly straightforward what it does:

execIf :: [SCondition] → [SInstr] → Engine SBool
execIf conds instrs = do
(oks, args) ← partitionEithers ⟨$⟩mapM evalCond conds
let ok = sAnd oks
sWhen ok (exec args instrs)
return ok

5 NOTIONS OF ADVENTURING AND
MONADS

At this point, we have a symbolic interpreter which can consume
user input line by line:

stepPlayer :: (SInt16, SInt16) → Engine (SMaybe Bool)
stepPlayer (verb, noun) = do

perform (verb, noun)
isFinished

The question then is, how do we keep turning the crank of this
and let the state evolve for more and more lines of symbolic input,
until we get an sJust sTrue result, meaning the player has won the
game? SBV’s monadicQuery mode provides a way to do this incre-
mentally: at each step, fresh free symbolic variables standing for
the next input line are fed to the state transition function, yielding
a new symbolic state and return value. Then, satisfiability of this
new return value being sJust sTrue is checked with the SMT solver;
if there’s no solution yet, we keep this process going, letting the
next stepPlayer call create further constraints. Furthermore, since
the Query monad allows IO, we can recover the behavior of our
original, concrete interpreter. Instead of using free variables for the
input at each step, we read and parse the player’s input into SInt16
variables containing concrete values. Since the only potentially
symbolic arguments to the Engine are the player inputs, if those are
concrete, everything further downstream will also be concrete. In
particular, the output messages, while their type is SString, contain
concrete values which can be extracted into the standard String
type for printing. This allows the same interpreter implementation
to be used for both solving and interactive playing.

6 CONCLUSION
The full code of our symbolic Scott Adams adventure game in-
terpreter is available under the terms of the MIT license from
https://github.com/gergoerdi/scottcheck.

The combination of Haskell, a general-purpose functional lan-
guage, and SBV, a library for SMT-based verification, allowed rapid
development of a symbolic interpreter with acceptable real-world
performance: ScottCheck was written from scratch in a single week,
by an author previously unfamiliar with symbolic execution tech-
niques. In terms of performance, with the Z3 SMT solver backend,
it can successfully find a solution (consisting of 14 steps) for the
fourth tutorial adventure from the ScottKit suite[7] in three and a
half minutes. Further testing with more complicated adventures
remains future work.

REFERENCES
[1] L. DeMoura and N. Bjørner. Z3: An efficient SMT solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340.
Springer, 2008.

[2] L. Erkök. SBV: SMT based verification in Haskell, 2011. URL https://leventerkok.
github.io/sbv/.

[3] M. M. Lester. Program transformations enable verification tools to solve interactive
fiction games. In 7th International Workshop on Rewriting Techniques for Program
Transformations and Evaluation, 2020.

[4] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 333–343, 1995.

[5] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving mechanism
for haskell. ACM Sigplan Notices, 45(11):37–48, 2010.

[6] S. Poeplau and A. Francillon. Symbolic execution with SymCC: Don’t in-
terpret, compile! In 29th USENIX Security Symposium (USENIX Security 20),
Boston, MA, 2020. USENIX Association. URL https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau.

[7] M. Taylor. ScottKit - a toolkit for Scott Adams-style adventure games, 2009. URL
https://rdoc.info/github/MikeTaylor/scottkit.

[8] E. Torlak and R. Bodik. Growing solver-aided languages with rosette. In Proceed-
ings of the 2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software, pages 135–152, 2013.

https://github.com/gergoerdi/scottcheck
https://leventerkok.github.io/sbv/
https://leventerkok.github.io/sbv/
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://rdoc.info/github/MikeTaylor/scottkit

	Abstract
	1 Introduction
	2 Structure and Interpretation of Adventure Games
	3 Monad Transformers for Concrete Interpreters
	4 Symbolic Execution and Puzzle Testing
	5 Notions of Adventuring and Monads
	6 Conclusion
	References

