Free monoids take a price HIT

Gergő Érdi
http://unsafePerform.IO/

Haskell.SG, January 2020.

1. Recap: your grandma's free monoids

Monoids

```
record Monoid A : Type where
    field
    set : isSet A
    \(\diamond_{-}: A \rightarrow A \rightarrow A\)
\(\epsilon: A\)
    unit-l : \(\forall \mathrm{x} \quad \rightarrow \epsilon \diamond \mathrm{x} \equiv \mathrm{x}\)
    unit-r : \(\forall \mathrm{x} \quad \rightarrow \mathrm{x} \diamond \epsilon \equiv \mathrm{x}\)
    assoc \(: \forall \mathrm{x} y \mathrm{z} \rightarrow(\mathrm{x} \diamond \mathrm{y}) \diamond \mathrm{z} \equiv \mathrm{x} \diamond(\mathrm{y} \diamond \mathrm{z})\)
```

open Monoid \{\{...\}\}

Syntax of monoids

data MonoidSyntax A : Type where
Element : A \rightarrow MonoidSyntax A
_: \diamond _ : MonoidSyntax A \rightarrow MonoidSyntax A \rightarrow MonoidSyntax
: $\epsilon: \quad$: MonoidSyntax A

Syntax of monoids

```
data MonoidSyntax A : Type where
    Element : A -> MonoidSyntax A
    _:\diamond:_ : MonoidSyntax A -> MonoidSyntax A -> MonoidSyntax
    :\epsilon: : MonoidSyntax A
```

Is MonoidSyntax a monoid?

Syntax of monoids

data MonoidSyntax A : Type where
Element : A \rightarrow MonoidSyntax A
_: \diamond _ \quad MonoidSyntax $A \rightarrow$ MonoidSyntax $A \rightarrow$ MonoidSyntax
: $\epsilon: \quad$: MonoidSyntax A

Is MonoidSyntax a monoid?

Regardless of the carrier type A, this is not a lawful monoid; for example:

```
xs \diamond (ys \diamond zs) = xs :\diamond: (ys :\diamond: zs)
(xs \diamond ys) \diamond zs = (xs :\diamond: ys) :\diamond: zs
```


Syntax of monoids

data MonoidSyntax A : Type where
Element : A \rightarrow MonoidSyntax A
_: \diamond _ $\quad:$ MonoidSyntax $A \rightarrow$ MonoidSyntax $A \rightarrow$ MonoidSyntax
: $\epsilon: \quad$: MonoidSyntax A

Is MonoidSyntax a monoid?

Regardless of the carrier type A, this is not a lawful monoid; for example:
$x s \diamond(y s \diamond z s)=x s: \diamond:(y s: \diamond: z s)$
(xs $\diamond \mathrm{ys}$) $\diamond \mathrm{zs}=(\mathrm{xs}: \diamond: \mathrm{ys}): \diamond: \mathrm{zs}$
There is too fine a structure!

Is MonoidSyntax a monoid?

Monoid homomorphisms

record isHom (M : Monoid A) (N : Monoid B) (ϕ : A \rightarrow B) : Ty open Monoid M renaming (_ \diamond_{-}to _ $\diamond_{1 _} ; \epsilon$ to ϵ_{1}) open Monoid N renaming (\diamond_{-}to _ \diamond_{2}; ϵ to ϵ_{2}) field

$$
\begin{aligned}
& \text { map-unit }: \phi \epsilon_{1} \equiv \epsilon_{2} \\
& \text { map-op }: \forall \mathrm{x} y \rightarrow \phi\left(\mathrm{x} \diamond_{1} \mathrm{y}\right) \equiv \phi \mathrm{x} \diamond_{2} \phi \mathrm{y}
\end{aligned}
$$

Extends : $(A \rightarrow B) \rightarrow(A \rightarrow T) \rightarrow(T \rightarrow B) \rightarrow$ Type
Extends f inj $\phi=\phi \circ \operatorname{inj} \equiv \mathrm{f}$
Hom-Extends : (M_{0} : Monoid T) (M : Monoid B) \rightarrow $(A \rightarrow B) \rightarrow(A \rightarrow T) \rightarrow(T \rightarrow B) \rightarrow$ Type
Hom-Extends $M_{0} M f$ inj $\phi=$ isHom $M_{0} M \phi \times$ Extends f inj ϕ

Free monoids

```
Unique : (A : Type) (P : A }->\mathrm{ Type) }->\mathrm{ Type
Unique A P = \Sigma[x G A ] \Sigma[_ E P x ]
    \forall(y : A) }->\textrm{P}y>y y \equiv\textrm{x
record IsFreeMonoidOver (A : Type) (M M : Monoid T) : Type 
    field
    inj : A -> T
    free : {{M : Monoid B}} (f : A }->\mathrm{ B) }
        Unique (T }->\mathrm{ B) (Hom-Extends M M f inj)
IsFreeMonoid :
    {F : Type }->\mathrm{ Type} (FM : }\forall{A} -> isSet A -> Monoid (F A))
    Type 
IsFreeMonoid {F} FM = \forall {A} (AIsSet : isSet A) ->
    IsFreeMonoidOver A (FM AIsSet)
```


List A is a free monoid

${ }_{-}^{++}$is associative simply because there is no place to hide for a tree structure in a chain of _::_'s.
listMonoid : isSet A \rightarrow Monoid (List A)
listMonoid $\{\mathrm{A}=\mathrm{A}\}$ AIsSet $=$ record
\{ set = isOfHLevelList 0 AIsSet
; _${ }_{-}=$- $^{++}$
; $\epsilon=$ []
; unit-l $=\lambda$ xs \rightarrow refl
; unit-r = ++-unit-r
; assoc = ++-assoc
\}
listIsFree : IsFreeMonoid listMonoid

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

What is a good representation for free...

- commutative monoids?

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

What is a good representation for free...

- commutative monoids? Map a Nat

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

What is a good representation for free...

- commutative monoids? Map a Nat
- Abelian groups?

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

What is a good representation for free...

- commutative monoids? Map a Nat
- Abelian groups? Map a Int

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

What is a good representation for free...

- commutative monoids? Map a Nat
- Abelian groups? Map a Int
- Groups?

The price of free

We had to think to come up with the representation [a] for the free monoid, it didn't follow mechanically from the definition of monoids.

What is a good representation for free...

- commutative monoids? Map a Nat
- Abelian groups? Map a Int
- Groups?

"I don't want to be thinking, I want to be HoTT!"

2. Free monoids in HoTT

A HoTT \& free monoid

In a HoTT setting, we can write a free monoid without thinking by taking the monoid syntax and enriching it with the monoid law-induced equalities as a higher inductive type:
data HITMon A : Type where

```
    \(\left\langle \_\right\rangle: A \rightarrow\) HITMon A
    : \(\epsilon\) : : HITMon A
    _: \(\diamond\) _ \(\quad:\) HITMon A \(\rightarrow\) HITMon A \(\rightarrow\) HITMon A
    :unit-l: : \(\forall \mathrm{x} \rightarrow: \epsilon: \quad: \diamond \mathrm{x} \equiv \mathrm{x}\)
    :unit-r: : \(\forall \mathrm{x} \rightarrow \mathrm{x}: \diamond:: \epsilon: \equiv \mathrm{x}\)
    :assoc: \(: \forall \mathrm{x} y \mathrm{z} \rightarrow(\mathrm{x}: \diamond: \mathrm{y}): \diamond: \mathrm{z} \equiv \mathrm{x}: \diamond:(\mathrm{y}: \diamond: \mathrm{z})\)
    trunc : isSet (HITMon A)
```


HITMon is trivially a monoid

```
freeMonoid : }\forall\textrm{A}->\mathrm{ Monoid (HITMon A)
freeMonoid A = record
    { set = trunc
    ; _\diamond_ = _:\diamond:_
    ; \epsilon = :\epsilon:
    ; unit-l = :unit-l:
    ; unit-r = :unit-r:
    ; assoc = :assoc:
    }
```


HITMon is trivially a monoid

```
freeMonoid : \forall A }->\mathrm{ Monoid (HITMon A)
freeMonoid A = record
    { set = trunc
    ; _\diamond_ = _:\diamond:_
    ; \epsilon = : }\epsilon\mathrm{ :
    ; unit-l = :unit-l:
    ; unit-r = :unit-r:
    ; assoc = :assoc:
    }
... and it's also free:
freeMonoidIsFree : IsFreeMonoid ( }\lambda\mathrm{ {A} _ > freeMonoid A)
```


List vs HITMon

The two are isomorphic.
From List to HITMon we can just go right-associated:

```
module ListVsHITMon (AIsSet : isSet A) where
    listIsSet : isSet (List A)
    listIsSet = isOfHLevelList 0 AIsSet
    fromList : List A }->\mathrm{ HITMon A
    fromList [] = : }\epsilon\mathrm{ :
    fromList (x :: xs) = \langle x \rangle :\diamond: fromList xs
```


List vs HITMon (cont.)

For the other direction, we map fiat equalities to list equality proofs:

```
toList : HITMon A -> List A
toList \langle x \rangle = x :: []
toList : }\epsilon\mathrm{ : = []
toList (x :\diamond: y) = toList x ++ toList y
toList (:unit-l: x i) = toList x
toList (:unit-r: x i) = ++-unit-r (toList x) i
toList (:assoc: x y z i) = ++-assoc
    (toList x) (toList y) (toList z)
    i
toList (trunc x y p q i j) = listIsSet
    (toList x) (toList y)
    (cong toList p)
    (cong toList q)
    i j
```


List vs HITMon (cont.)

These two functions form an isomorphism, which we can lift using univalence into a type equality:

```
toList-fromList : }\forall\mathrm{ xs }->\mathrm{ toList (fromList xs) = xs
fromList-toList : }\forall\textrm{x}->\mathrm{ fromList (toList x) 三 x
HITMon\simeqList : HITMon A \simeq List A
HITMon\simeqList = isoToEquiv
    (iso toList fromList toList-fromList fromList-toList)
HITMon=List : HITMon A \equiv List A
HITMon=List = ua HITMon\simeqList
```


The free monoid

All free monoids over the same base set are isomorphic (and thus by univalence, equal) so it makes sense to talk about the free monoid.

The free monoid

All free monoids over the same base set are isomorphic (and thus by univalence, equal) so it makes sense to talk about the free monoid.

The free monoid

All free monoids over the same base set are isomorphic (and thus by univalence, equal) so it makes sense to talk about the free monoid.

Sketch of the proof:

- Suppose we have M and N free monoids over some A, and take the homomorphisms ϕ : Hom N M (since N is free) and ψ : Hom M N with $\phi \circ \operatorname{inj}_{N} \equiv \operatorname{inj}_{M}$ and $\psi \circ \operatorname{inj}_{M} \equiv \operatorname{inj}_{N}$
- We have $\phi \circ \psi:$ Hom M M, with $\phi \circ \psi \circ \operatorname{inj}_{M} \equiv \operatorname{inj}_{M}$
- Now since M is free, take ι : Hom M M with $\iota \circ \operatorname{inj}_{M} \equiv$ inj_{M} uniquely. This gives $\phi \circ \psi \equiv \iota \equiv$ id since they all satisfy this property. Likewise for $\psi \circ \phi$.
- So ϕ and ψ form an isomorphism between M and N. \square

