
Free monoids take a price HIT

Gergő Érdi
http://unsafePerform.IO/

Haskell.SG, January 2020.

1 / 16

http://unsafePerform.IO/

1. Recap: your grandma’s free monoids

2 / 16

Monoids

record Monoid A : Type where
field

set : isSet A

⋄ : A → A → A
𝜖 : A

unit-l : ∀ x → 𝜖 ⋄ x ≡ x
unit-r : ∀ x → x ⋄ 𝜖 ≡ x
assoc : ∀ x y z → (x ⋄ y) ⋄ z ≡ x ⋄ (y ⋄ z)

open Monoid {{...}}

3 / 16

Syntax of monoids

data MonoidSyntax A : Type where
Element : A → MonoidSyntax A
:⋄: : MonoidSyntax A → MonoidSyntax A → MonoidSyntax A
:𝜖: : MonoidSyntax A

Is MonoidSyntax a monoid?
Regardless of the carrier type A, this is not a lawful monoid; for
example:
xs ⋄ (ys ⋄ zs) = xs :⋄: (ys :⋄: zs)
(xs ⋄ ys) ⋄ zs = (xs :⋄: ys) :⋄: zs
There is too fine a structure!

4 / 16

Syntax of monoids

data MonoidSyntax A : Type where
Element : A → MonoidSyntax A
:⋄: : MonoidSyntax A → MonoidSyntax A → MonoidSyntax A
:𝜖: : MonoidSyntax A

Is MonoidSyntax a monoid?

Regardless of the carrier type A, this is not a lawful monoid; for
example:
xs ⋄ (ys ⋄ zs) = xs :⋄: (ys :⋄: zs)
(xs ⋄ ys) ⋄ zs = (xs :⋄: ys) :⋄: zs
There is too fine a structure!

4 / 16

Syntax of monoids

data MonoidSyntax A : Type where
Element : A → MonoidSyntax A
:⋄: : MonoidSyntax A → MonoidSyntax A → MonoidSyntax A
:𝜖: : MonoidSyntax A

Is MonoidSyntax a monoid?
Regardless of the carrier type A, this is not a lawful monoid; for
example:
xs ⋄ (ys ⋄ zs) = xs :⋄: (ys :⋄: zs)
(xs ⋄ ys) ⋄ zs = (xs :⋄: ys) :⋄: zs

There is too fine a structure!

4 / 16

Syntax of monoids

data MonoidSyntax A : Type where
Element : A → MonoidSyntax A
:⋄: : MonoidSyntax A → MonoidSyntax A → MonoidSyntax A
:𝜖: : MonoidSyntax A

Is MonoidSyntax a monoid?
Regardless of the carrier type A, this is not a lawful monoid; for
example:
xs ⋄ (ys ⋄ zs) = xs :⋄: (ys :⋄: zs)
(xs ⋄ ys) ⋄ zs = (xs :⋄: ys) :⋄: zs
There is too fine a structure!

4 / 16

Is MonoidSyntax a monoid?

(xs ⋄ ys) ⋄ zs

zs

ysxs

:⋄:

:⋄:

xs ⋄ (ys ⋄ zs)

zsys

:⋄:xs

:⋄:

5 / 16

Monoid homomorphisms

record isHom (M : Monoid A) (N : Monoid B) (𝜙 : A → B) : Type where
open Monoid M renaming (_⋄_ to _⋄1_; 𝜖 to 𝜖1)
open Monoid N renaming (_⋄_ to _⋄2_; 𝜖 to 𝜖2)
field

map-unit : 𝜙 𝜖1 ≡ 𝜖2
map-op : ∀ x y → 𝜙 (x ⋄1 y) ≡ 𝜙 x ⋄2 𝜙 y

Extends : (A → B) → (A → T) → (T → B) → Type
Extends f inj 𝜙 = 𝜙 ∘ inj ≡ f

Hom-Extends : (M0 : Monoid T) (M : Monoid B) →
(A → B) → (A → T) → (T → B) → Type

Hom-Extends M0 M f inj 𝜙 = isHom M0 M 𝜙 × Extends f inj 𝜙

6 / 16

Free monoids

Unique : (A : Type) (P : A → Type) → Type
Unique A P = Σ[x ∈ A] Σ[_ ∈ P x]

∀ (y : A) → P y → y ≡ x

record IsFreeMonoidOver (A : Type) (M0 : Monoid T) : Type1 where
field

inj : A → T
free : {{M : Monoid B}} (f : A → B) →

Unique (T → B) (Hom-Extends M0 M f inj)

IsFreeMonoid :
{F : Type → Type} (FM : ∀ {A} → isSet A → Monoid (F A)) →
Type1

IsFreeMonoid {F} FM = ∀ {A} (AIsSet : isSet A) →
IsFreeMonoidOver A (FM AIsSet)

7 / 16

List A is a free monoid

++ is associative simply because there is no place to hide for a
tree structure in a chain of _∶∶_’s.

listMonoid : isSet A → Monoid (List A)
listMonoid {A = A} AIsSet = record

{ set = isOfHLevelList 0 AIsSet
; _⋄_ = _++_
; 𝜖 = []
; unit-l = 𝜆 xs → refl
; unit-r = ++-unit-r
; assoc = ++-assoc
}

listIsFree : IsFreeMonoid listMonoid

8 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids? Map a Nat
• Abelian groups? Map a Int
• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids?

Map a Nat
• Abelian groups? Map a Int
• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids? Map a Nat

• Abelian groups? Map a Int
• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids? Map a Nat
• Abelian groups?

Map a Int
• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids? Map a Nat
• Abelian groups? Map a Int

• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids? Map a Nat
• Abelian groups? Map a Int
• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

The price of free
We had to think to come up with the representation [a] for the
free monoid, it didn’t follow mechanically from the definition of
monoids.

What is a good representation for free…
• commutative monoids? Map a Nat
• Abelian groups? Map a Int
• Groups?

“I don’t want to be thinking, I want to be HoTT!”

9 / 16

2. Free monoids in HoTT

10 / 16

A HoTT & free monoid

In a HoTT setting, we can write a free monoid without thinking
by taking the monoid syntax and enriching it with the monoid
law-induced equalities as a higher inductive type:

data HITMon A : Type where
⟨_⟩ : A → HITMon A
:𝜖: : HITMon A
:⋄: : HITMon A → HITMon A → HITMon A

:unit-l: : ∀ x → :𝜖: :⋄: x ≡ x
:unit-r: : ∀ x → x :⋄: :𝜖: ≡ x
:assoc: : ∀ x y z → (x :⋄: y) :⋄: z ≡ x :⋄: (y :⋄: z)

trunc : isSet (HITMon A)

11 / 16

HITMon is trivially a monoid

freeMonoid : ∀ A → Monoid (HITMon A)
freeMonoid A = record

{ set = trunc
; _⋄_ = _:⋄:_
; 𝜖 = :𝜖:
; unit-l = :unit-l:
; unit-r = :unit-r:
; assoc = :assoc:
}

… and it’s also free:

freeMonoidIsFree : IsFreeMonoid (𝜆 {A} _ → freeMonoid A)

12 / 16

HITMon is trivially a monoid

freeMonoid : ∀ A → Monoid (HITMon A)
freeMonoid A = record

{ set = trunc
; _⋄_ = _:⋄:_
; 𝜖 = :𝜖:
; unit-l = :unit-l:
; unit-r = :unit-r:
; assoc = :assoc:
}

… and it’s also free:

freeMonoidIsFree : IsFreeMonoid (𝜆 {A} _ → freeMonoid A)

12 / 16

List vs HITMon

The two are isomorphic.

From List to HITMon we can just go right-associated:

module ListVsHITMon (AIsSet : isSet A) where
listIsSet : isSet (List A)
listIsSet = isOfHLevelList 0 AIsSet

fromList : List A → HITMon A
fromList [] = :𝜖:
fromList (x ∶∶ xs) = ⟨ x ⟩ :⋄: fromList xs

13 / 16

List vs HITMon (cont.)
For the other direction, we map fiat equalities to list equality
proofs:

toList : HITMon A → List A
toList ⟨ x ⟩ = x ∶∶ []
toList :𝜖: = []
toList (x :⋄: y) = toList x ++ toList y
toList (:unit-l: x i) = toList x
toList (:unit-r: x i) = ++-unit-r (toList x) i
toList (:assoc: x y z i) = ++-assoc

(toList x) (toList y) (toList z)
i

toList (trunc x y p q i j) = listIsSet
(toList x) (toList y)
(cong toList p)
(cong toList q)
i j

14 / 16

List vs HITMon (cont.)

These two functions form an isomorphism, which we can lift using
univalence into a type equality:

toList-fromList : ∀ xs → toList (fromList xs) ≡ xs
fromList-toList : ∀ x → fromList (toList x) ≡ x

HITMon≃List : HITMon A ≃ List A
HITMon≃List = isoToEquiv

(iso toList fromList toList-fromList fromList-toList)

HITMon≡List : HITMon A ≡ List A
HITMon≡List = ua HITMon≃List

15 / 16

The free monoid

All free monoids over the same base set are isomorphic (and thus
by univalence, equal) so it makes sense to talk about the free
monoid.

Sketch of the proof:
• Suppose we have M and N free monoids over some A, and take

the homomorphisms 𝜙 : Hom N M (since N is free) and 𝜓 :
Hom M N with 𝜙 ∘ inj𝑁 ≡ inj𝑀 and 𝜓 ∘ inj𝑀 ≡ inj𝑁

• We have 𝜙 ∘ 𝜓 : Hom M M, with 𝜙 ∘ 𝜓 ∘ inj𝑀 ≡ inj𝑀

• Now since M is free, take 𝜄 : Hom M M with 𝜄 ∘ inj𝑀 ≡
inj𝑀 uniquely. This gives 𝜙 ∘ 𝜓 ≡ 𝜄 ≡ id since they all
satisfy this property. Likewise for 𝜓 ∘ 𝜙.

• So 𝜙 and 𝜓 form an isomorphism between M and N.

16 / 16

The free monoid

All free monoids over the same base set are isomorphic (and thus
by univalence, equal) so it makes sense to talk about the free
monoid.

Sketch of the proof:
• Suppose we have M and N free monoids over some A, and take

the homomorphisms 𝜙 : Hom N M (since N is free) and 𝜓 :
Hom M N with 𝜙 ∘ inj𝑁 ≡ inj𝑀 and 𝜓 ∘ inj𝑀 ≡ inj𝑁

• We have 𝜙 ∘ 𝜓 : Hom M M, with 𝜙 ∘ 𝜓 ∘ inj𝑀 ≡ inj𝑀

• Now since M is free, take 𝜄 : Hom M M with 𝜄 ∘ inj𝑀 ≡
inj𝑀 uniquely. This gives 𝜙 ∘ 𝜓 ≡ 𝜄 ≡ id since they all
satisfy this property. Likewise for 𝜓 ∘ 𝜙.

• So 𝜙 and 𝜓 form an isomorphism between M and N.

16 / 16

The free monoid

All free monoids over the same base set are isomorphic (and thus
by univalence, equal) so it makes sense to talk about the free
monoid.

Sketch of the proof:
• Suppose we have M and N free monoids over some A, and take

the homomorphisms 𝜙 : Hom N M (since N is free) and 𝜓 :
Hom M N with 𝜙 ∘ inj𝑁 ≡ inj𝑀 and 𝜓 ∘ inj𝑀 ≡ inj𝑁

• We have 𝜙 ∘ 𝜓 : Hom M M, with 𝜙 ∘ 𝜓 ∘ inj𝑀 ≡ inj𝑀

• Now since M is free, take 𝜄 : Hom M M with 𝜄 ∘ inj𝑀 ≡
inj𝑀 uniquely. This gives 𝜙 ∘ 𝜓 ≡ 𝜄 ≡ id since they all
satisfy this property. Likewise for 𝜓 ∘ 𝜙.

• So 𝜙 and 𝜓 form an isomorphism between M and N.

16 / 16

	Recap: your grandma's free monoids
	Free monoids in HoTT

