
Cubical Type Theory:
From i0 to i1

Gergő Érdi
http://gergo.erdi.hu/

Haskell.SG
December 2018.

1 / 39

http://gergo.erdi.hu/

How many Agda programmers does it take to change a
lightbulb?

Are you kidding me? It takes two PhD’s six months just to
prove that the socket and the bulb are wound in the same
direction!

2 / 39

How many Agda programmers does it take to change a
lightbulb?

Are you kidding me? It takes two PhD’s six months just to
prove that the socket and the bulb are wound in the same
direction!

2 / 39

1. Martin-Löf Type Theory

3 / 39

Type Theory

• Single unified language for objects and propositions
(c.f. ZF set theory + FOL)

• Dependent types give us predicate logic (via
Curry-Howard)

• Type formers, eliminators, 𝛽-rules

4 / 39

MLTT types

• U: the type of types (called Set in Agda)

• ⊥, ⊤, Bool

• Π, Σ

• Inductive datatypes (e.g. ℕ)

5 / 39

Equality in MLTT

Id A x y : U

Its sole constructor is refl : ∀ x → Id x x

Definitional equality: everything can only be equal to
itself.

6 / 39

Properties of Id

Axiom J: eliminator for identity type

J : (P : (x y : A) → Id x y → Set) →
(∀ x → P x x (refl x)) →
∀ {x y : A} (p : Id x y) → P x y p

From this, we can prove that Id is an equivalence relation.

7 / 39

Properties of Id (cont.d)

Uniqueness of identity types:

UIP : {x y : A} → (p q : Id x y) → Id p q

Axiom K : equivalent to UIP

K : ∀ (x : A) → (P : Id x x → Set) →
P (refl x) →
∀ (p : Id x x) → P p

UIP / K are independent of (but compatible with) MLTT.

8 / 39

Properties of Id (cont.d)

Function extensionality :

funExt : (f g : (x : A) → B x) →
(∀ x → Id (f x) (g x)) →
Id f g

Function extensionality is independent of (but
compatible with) MLTT.

9 / 39

2. Topological homotopies

10 / 39

Spaces and paths
In some topological space 𝐴 and two points 𝑥, 𝑦 ∶ 𝐴, a
path 𝑝 from 𝑥 to 𝑦 (or, 𝑝 ∶ 𝑥⇝ 𝑦) is:

𝑝 ∶ [0, 1] → 𝐴, 𝑝 ∈ 𝐶 s.t.
𝑝(0) = 𝑥, 𝑝(1) = 𝑦

11 / 39

Homotopies

If 𝑓, 𝑔 ∶ 𝐴 → 𝐵, 𝑓, 𝑔 ∈ 𝐶 , then a homotopy 𝐻 between 𝑓
and 𝑔 is:

𝐻 ∶ 𝐴 × [0, 1] → 𝐵, 𝐻 ∈ 𝐶 s.t.
𝐻(𝑥, 0) = 𝑓(𝑥)
𝐻(𝑥, 1) = 𝑔(𝑥)

12 / 39

Homotopies between paths

If 𝑝, 𝑞 ∶ 𝑥⇝ 𝑦, then as a special case, a homotopy 𝐻
between 𝑝 and 𝑞 is:

𝐻 ∶ [0, 1] × [0, 1] → 𝐴, 𝐻 ∈ 𝐶 s.t.

𝐻(𝑖, 0) = 𝑝(𝑖)
𝐻(𝑖, 1) = 𝑞(𝑖)
𝐻(0, 𝑗) = 𝑥
𝐻(1, 𝑗) = 𝑦
This can be iterated.

13 / 39

Paths as equalities?

Paths between points are a bit like equalities between
them: they are reflexive (trivial path), symmetric (just go
backwards) and transitive (concatenation).

But what does that mean?

14 / 39

3. Homotopy Type Theory

15 / 39

Type Theory with Paths

Basic idea: types are spaces, and the paths in that space
(written _≡_) correspond to equalities.

• This only makes sense if all functions are continuous

• Trivially true for discrete spaces

• Paths have structure, so UIP doesn’t hold

• Paths are purely synthetic, we’re not putting
[0, 1] ⊆ ℝ at the base of our formal system…

16 / 39

Are there any non-discrete spaces?

• U is a type, so some types A and B are points in that
space. When is there a path between them?

• Univalence axiom: the paths in U are equivalent to
equivalences, i.e. invertible functions modulo paths.
This is highy desirable!

• Different equivalences yield different paths (e.g. id
vs. not for Bool)

• Function extensionality can be proven from UA

17 / 39

Non-discrete spaces by fiat

Might as well use this rich structure of paths!

Higher inductive type: similar to an inductive datatype,
but constructors for not only points, but paths, paths
between paths, etc.

data Circle : Set where
base : Circle
loop : base ≡ base

This generates a space via the algebra of paths; e.g.
trans loop loop ∶ base ≡ base.

18 / 39

HIT example: ℤ

We can represent the integers ℤ as ℕ × ℕ/ ∼ where
(𝑥, 𝑦) ∼ (𝑥′, 𝑦′) ∶= (𝑥 + 𝑦′) ≡ (𝑥′ + 𝑦).

19 / 39

HIT example: ℤ

Written out as a HIT:

Same : ℕ → ℕ → ℕ → ℕ → _
Same x y x′ y′ = x + y′ ≡ x′ + y

data ℤ : Set where
- : ℕ → ℕ → ℤ
quot : ∀ x y x′ y′ → Same x y x′ y′
→ x - y ≡ x′ - y′

20 / 39

Functions over ℤ

Continuity in this space: representation-invariance.

Enforced by the type system: functions are defined over
points and paths at the same time.

For example, if we want to do doubling:

double ∶ ℤ → ℤ
double (x - y)) = 2 ∗ x - 2 ∗ y

we also have to give

double (quot x y x′ y′ eq) =
quot (2 ∗ x) (2 ∗ y) (2 ∗ x′) (2 ∗ y′) arithmetic-prf

21 / 39

Summary

• MLTT, paths as equality, no 𝐾
• Univalence added as an axiom

• All functions continuous by construction

• Function extensionality is a theorem

• Higher inductive types (and more…)

Big BUT:

HoTT postulates the Univalence Axiom with no
computational content

22 / 39

Summary

• MLTT, paths as equality, no 𝐾
• Univalence added as an axiom

• All functions continuous by construction

• Function extensionality is a theorem

• Higher inductive types (and more…)

Big BUT: HoTT postulates the Univalence Axiom with no
computational content

22 / 39

4. Cubical Type Theory

23 / 39

Representations of paths

• Topology: 𝑝 ∶ [0, 1] → 𝐴, 𝑝 ∈ 𝐶 :
“continuously-infinitely detailed”, 𝑝(1

𝜋) etc.

• Homotopy Type Theory: 𝑝 ∶ {0, 1} → 𝐴? But no UIP,
so it does have structure? But not enough to support
computation?

• Cubical Type Theory: 𝑝 ∶ 𝐼 → 𝐴, where 𝐼 is some
formal version of [0, 1]

24 / 39

Representations of paths

• Topology: 𝑝 ∶ [0, 1] → 𝐴, 𝑝 ∈ 𝐶 :
“continuously-infinitely detailed”, 𝑝(1

𝜋) etc.

• Homotopy Type Theory: 𝑝 ∶ {0, 1} → 𝐴? But no UIP,
so it does have structure? But not enough to support
computation?

• Cubical Type Theory: 𝑝 ∶ 𝐼 → 𝐴, where 𝐼 is some
formal version of [0, 1]

24 / 39

Paths, algebraically

𝐼 is the free distributive lattice (of countably infinite,
distinct direction variables):

i0 i1 : I

~_ : I → I
∨ : I → I → I
∧ : I → I → I

This has decidable equality!

We then represent a path 𝑝 ∶ 𝑥 ≡ 𝑦 by a function
p ∶ I → A s.t. p i0 = x and p i1 = y.

25 / 39

Paths, algebraically

𝐼 is the free distributive lattice (of countably infinite,
distinct direction variables):

i0 i1 : I

~_ : I → I
∨ : I → I → I
∧ : I → I → I

This has decidable equality!

We then represent a path 𝑝 ∶ 𝑥 ≡ 𝑦 by a function
p ∶ I → A s.t. p i0 = x and p i1 = y.

25 / 39

refl and sym are easy theorems

Unlike in HoTT, path reflexivity and symmetry are no
longer axioms:

refl : {x : A} → x ≡ x
refl {x} = λ i → x

sym : ∀ {x y : A} → x ≡ y → y ≡ x
sym p = λ i → p (~ i)

26 / 39

Equality-like behaviour
cong : (f : A → B) {x y : A} → x ≡ y → f x ≡ f y
cong f p = λ i → f (p i)

cong : (f : (x : A) → B x) {x y : A} →
(p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y)

cong f p = λ i → f (p i)

27 / 39

Equality-like behaviour
cong : (f : (x : A) → B x) {x y : A} →
(p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y)

cong f p = λ i → f (p i)

27 / 39

Equality-like behaviour

funExt : {f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g

funExt p = λ i → (λ x → p x i)

28 / 39

What about transitivity?
If p ∶ x ≡ y and q ∶ y ≡ z, how do we make

trans p q = 𝜆 i → {p(2i) if i ≤ 0.5
q(2i − 1) if i ≥ 0.5

But 𝑖 is just a formal interval variable, we can’t go
“halfway” along it.

29 / 39

Path composition
The primitive operation that supports transitivity, and
many other ways of composing paths, is: given the
bottom of a “box“, and a system of consistent sides, we
can construct the lid.

30 / 39

Transitivity via comp

trans : x ≡ y → y ≡ z → x ≡ z
trans p q i = comp (λ _ → A)

(λ { j (i = i0) → x
; j (i = i1) → q j
})

(inc (p i))

31 / 39

A sliding version

slidingLid : (p₀ : x ≡ y) (p₁ : x′ ≡ y′) (q : x ≡ x′) →
∀ i → p₀ i ≡ p₁ i

slidingLid p₀ p₁ q i j = comp (λ _ → A)
(λ { k (j = i0) → p₀ (i ∧ k)

; k (j = i1) → p₁ (i ∧ k)
; k (i = i0) → q j
})

(inc (q j))
32 / 39

double, cubically

double : ℤ → ℤ
double (x - y) = (2 * x) - (2 * y)
double (quot x y x′ y′ p i) =
quot (2 * x) (2 * y) (2 * x′) (2 * y′) p′ i
where
p′ : 2 * x + 2 * y′ ≡ 2 * x′ + 2 * y
p′ = arithmetic-proof x y p

33 / 39

double, cubically

34 / 39

A non-unary example: ℤ addition

35 / 39

A problem:

What if there is no way to continuously deform
slidingLid p₀ p₁ q₀ i1

(a homotopically transformed proof)

into
q₁

(an arithmetic proof about natural numbers)

36 / 39

Solution: set-truncating

We define ℤ not to have any holes by adding a third
constructor (à la HoTT §6.10):

data ℤ : Set where
- : ℕ → ℕ → ℤ
quot : ∀ x y x′ y′ → Same x y x′ y′ → x - y ≡ x′ - y′
trunc : ∀ {x y : ℤ} → (p q : x ≡ y) → p ≡ q

More cases to handle in functions, but more possibilities
in constructing results.

37 / 39

We didn’t talk about

• Details of equivalences

• Univalence (a theorem in CTT) and glueing in general

38 / 39

Future project ideas

• Prove (ℤ, +) is an Abelian group

• Prove ℤ ≃ Int (from the standard library)

• Prove ℤ ≃ base ≡ base (in Circle)

39 / 39

	Martin-Löf Type Theory
	Topological homotopies
	Homotopy Type Theory
	Cubical Type Theory

