Cubical Type Theory: From i0 to i1

Gergő Érdi
http://gergo.erdi.hu/

Haskell.SG
December 2018.

How many Agda programmers does it take to change a lightbulb?

How many Agda programmers does it take to change a lightbulb?

Are you kidding me? It takes two PhD's six months just to prove that the socket and the bulb are wound in the same direction!

1. Martin-Löf Type Theory

Type Theory

- Single unified language for objects and propositions (c.f. ZF set theory + FOL)
- Dependent types give us predicate logic (via Curry-Howard)
- Type formers, eliminators, β-rules

MLTT types

- U: the type of types (called Set in Agda)
- \perp, \top, Bool
- Π, Σ
- Inductive datatypes (e.g. N)

Equality in MLTT

Id $A x y: U$
Its sole constructor is refl : $\forall \mathrm{x} \rightarrow \mathrm{Id} \mathrm{x} \mathrm{x}$
Definitional equality: everything can only be equal to itself.

Properties of Id

Axiom J: eliminator for identity type

$$
\begin{aligned}
\mathrm{J}: & (P:(x y: A) \rightarrow \mathrm{Id} x y \rightarrow \text { Set }) \rightarrow \\
& \forall x \rightarrow P x x(\operatorname{refI} x)) \rightarrow \\
& \forall\{x y: A\}(p: \operatorname{Id} x y) \rightarrow P x y p
\end{aligned}
$$

From this, we can prove that Id is an equivalence relation.

Properties of Id (cont.d)

Uniqueness of identity types:

$$
\text { UIP }:\{x y: A\} \rightarrow(p q: \operatorname{Id} x y) \rightarrow \operatorname{Id} p q
$$

Axiom K : equivalent to UIP

$$
\begin{aligned}
& \mathrm{K}: \forall(x: A) \rightarrow(P: \operatorname{Id} x x \rightarrow \mathrm{Set}) \rightarrow \\
& \quad P(\mathrm{refl} x) \rightarrow \\
& \quad \forall(p: \operatorname{Id} x x) \rightarrow P p
\end{aligned}
$$

UIP / K are independent of (but compatible with) MLTT.

Properties of Id (cont.d)

Function extensionality:

$$
\begin{aligned}
& \text { funExt }:(f g:(x: A) \rightarrow B x) \rightarrow \\
& \quad(\forall x \rightarrow \operatorname{ld}(f x)(g x)) \rightarrow \\
& \text { Id } f g
\end{aligned}
$$

Function extensionality is independent of (but compatible with) MLTT.

2. Topological homotopies

Spaces and paths

In some topological space A and two points $x, y: A$, a path p from x to y (or, $p: x \rightsquigarrow y$) is:

$$
\begin{aligned}
& p:[0,1] \rightarrow A, p \in C \text { s.t. } \\
& p(0)=x, p(1)=y
\end{aligned}
$$

A

Homotopies

If $f, g: A \rightarrow B, f, g \in C$, then a homotopy H between f and g is:

$$
\begin{aligned}
& H: A \times[0,1] \rightarrow B, H \in C \text { s.t. } \\
& H(x, 0)=f(x) \\
& H(x, 1)=g(x)
\end{aligned}
$$

Homotopies between paths

If $p, q: x \rightsquigarrow y$, then as a special case, a homotopy H between p and q is:

Paths as equalities?

Paths between points are a bit like equalities between them: they are reflexive (trivial path), symmetric (just go backwards) and transitive (concatenation).

But what does that mean?

3. Homotopy Type Theory

Type Theory with Paths

Basic idea: types are spaces, and the paths in that space (written _ \equiv_{-}) correspond to equalities.

- This only makes sense if all functions are continuous
- Trivially true for discrete spaces
- Paths have structure, so UIP doesn't hold
- Paths are purely synthetic, we're not putting
$[0,1] \subseteq \mathbb{R}$ at the base of our formal system...

Are there any non-discrete spaces?

- U is a type, so some types A and B are points in that space. When is there a path between them?
- Univalence axiom: the paths in U are equivalent to equivalences, i.e. invertible functions modulo paths. This is highy desirable!
- Different equivalences yield different paths (e.g. id vs. not for Bool)
- Function extensionality can be proven from UA

Non-discrete spaces by fiat

Might as well use this rich structure of paths!
Higher inductive type: similar to an inductive datatype, but constructors for not only points, but paths, paths between paths, etc.
data Circle: Set where base : Circle loop : base \equiv base

This generates a space via the algebra of paths; e.g. trans loop loop : base \equiv base.

HIT example: \mathbb{Z}

We can represent the integers \mathbb{Z} as $\mathbb{N} \times \mathbb{N} / \sim$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right):=\left(x+y^{\prime}\right) \equiv\left(x^{\prime}+y\right)$.

HIT example: \mathbb{Z}

Written out as a HIT:

Same: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow{ }_{-}$ Same $x y x^{\prime} y^{\prime}=x+y^{\prime} \equiv x^{\prime}+y$
data \mathbb{Z} : Set where

$$
-_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{Z}
$$

$$
\text { quot }: \forall x y x^{\prime} y^{\prime} \rightarrow \text { Same } x y x^{\prime} y^{\prime}
$$

$$
\rightarrow x-y \equiv x^{\prime}-y^{\prime}
$$

$(0,0) \quad(1,0) \quad(2,0)$
$(0,1) \quad(1,1) \quad(2,1)$
$(0,2)<1,2)(2,2)$
$(0,3)(1,3)^{n}(2,3$

Functions over \mathbb{Z}

Continuity in this space: representation-invariance.
Enforced by the type system: functions are defined over points and paths at the same time.
For example, if we want to do doubling:

$$
\begin{aligned}
& \text { double }: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \text { double }(x-y))=2 * x-2 * y
\end{aligned}
$$

we also have to give

$$
\begin{aligned}
& \text { double }\left(\text { quot } x y x^{\prime} y^{\prime} \text { eq) }=\right. \\
& \quad \text { quot }(2 * x)(2 * y)\left(2 * x^{\prime}\right)\left(2 * y^{\prime}\right) \text { arithmetic-prf }
\end{aligned}
$$

Summary

- MLTT, paths as equality, no K
- Univalence added as an axiom
- All functions continuous by construction
- Function extensionality is a theorem
- Higher inductive types (and more...)

Big BUT:

Summary

- MLTT, paths as equality, no K
- Univalence added as an axiom
- All functions continuous by construction
- Function extensionality is a theorem
- Higher inductive types (and more...)

Big BUT: HoTT postulates the Univalence Axiom with no computational content

4. Cubical Type Theory

Representations of paths

- Topology: $p:[0,1] \rightarrow A, p \in C$: "continuously-infinitely detailed", $p\left(\frac{1}{\pi}\right)$ etc.
- Homotopy Type Theory: $p:\{0,1\} \rightarrow A$? But no UIP, so it does have structure? But not enough to support computation?

Representations of paths

- Topology: $p:[0,1] \rightarrow A, p \in C$:
"continuously-infinitely detailed", $p\left(\frac{1}{\pi}\right)$ etc.
- Homotopy Type Theory: $p:\{0,1\} \rightarrow A$? But no UIP, so it does have structure? But not enough to support computation?
- Cubical Type Theory: $p: I \rightarrow A$, where I is some formal version of $[0,1]$

Paths, algebraically

I is the free distributive lattice (of countably infinite, distinct direction variables):

$$
\begin{aligned}
& \text { i0 } \mathrm{i} 1: I \\
& \mathcal{\sim}_{\bar{\prime}}: I \rightarrow I \\
& \mathrm{v}_{-}: I \rightarrow I \rightarrow I \\
& \wedge_{-}: I \rightarrow I \rightarrow I
\end{aligned}
$$

This has decidable equality!

Paths, algebraically

I is the free distributive lattice (of countably infinite, distinct direction variables):

$$
\begin{aligned}
& \text { i0 } \mathrm{i} 1: I \\
& \mathcal{\sim}_{\bar{\prime}}: I \rightarrow I \\
& \mathrm{v}_{-}: I \rightarrow I \rightarrow I \\
& \wedge_{-}: I \rightarrow I \rightarrow I
\end{aligned}
$$

This has decidable equality!
We then represent a path $p: x \equiv y$ by a function $\mathrm{p}: \mathrm{l} \rightarrow A$ s.t. $\mathrm{pi} 0=x$ and $\mathrm{pi} 1=y$.

refl and sym are easy theorems

Unlike in HoTT, path reflexivity and symmetry are no longer axioms:

$$
\begin{aligned}
& \text { refl : }\{x: A\} \rightarrow x \equiv x \\
& \text { refl }\{x\}=\lambda i \rightarrow x \\
& \text { sym }: \forall\{x y: A\} \rightarrow x \equiv y \rightarrow y \equiv x \\
& \operatorname{sym} p=\lambda i \rightarrow p(\sim i)
\end{aligned}
$$

Equality-like behaviour

cong : $(f: A \rightarrow B)\{x y: A\} \rightarrow x \equiv y \rightarrow f x \equiv f y$ cong $f p=\lambda i \rightarrow f(p i)$

Equality-like behaviour

$$
\begin{aligned}
& \operatorname{cong}:(f:(x: A) \rightarrow B x)\{x y: A\} \rightarrow \\
& (p: x \equiv y) \rightarrow \operatorname{PathP}(\lambda i \rightarrow B(p i))(f x)(f y) \\
& \operatorname{cong} f p=\lambda i \rightarrow f(p i)
\end{aligned}
$$

Equality-like behaviour

funExt: $\{f g:(x: A) \rightarrow B x\} \rightarrow$

$$
(\forall x \rightarrow f x \equiv g x) \rightarrow f \equiv g
$$

funExt $p=\lambda i \rightarrow(\lambda x \rightarrow p x i)$

A

What about transitivity?

If $p: x \equiv y$ and $q: y \equiv z$, how do we make
trans $p q=\lambda i \rightarrow \begin{cases}p(2 i) & \text { if } i \leq 0.5 \\ q(2 i-1) & \text { if } i \geq 0.5\end{cases}$

Path composition
The primitive operation that supports transitivity, and many other ways of composing paths, is: given the bottom of a "box", and a system of consistent sides, we can construct the lid.

Transitivity via comp

trans: $x \equiv y \longrightarrow y \equiv z \longrightarrow x \equiv z$ trans $p q i=\operatorname{comp}\left(\lambda_{-} \longrightarrow A\right)$

$$
\begin{aligned}
& (\lambda\{j(i=\mathrm{i} 0) \rightarrow x \\
& \quad ; j(i=\mathrm{i} 1) \rightarrow q j \\
& \quad\}) \\
& (\operatorname{inc}(p i))
\end{aligned}
$$

$$
x \xrightarrow{p} y \xrightarrow{q} z
$$

$$
j \prod_{i}
$$

A sliding version

slidingLid: $\left(p_{0}: x \equiv y\right)\left(p_{1}: x^{\prime} \equiv y\right)\left(q: x \equiv x^{\prime}\right) \longrightarrow$

$$
\forall i \longrightarrow p_{0} i \equiv p_{1} i
$$

slidingLid $p_{o} p_{1} q i j=\operatorname{comp}\left(\lambda_{-} \longrightarrow A\right)$

$$
\begin{aligned}
& \left(\lambda \left\{k(j=\mathrm{i} 0) \longrightarrow p_{0}(i \wedge k)\right.\right. \\
& \quad ; k(j=\mathrm{i} 1) \longrightarrow p_{1}(i \wedge k) \\
& \quad ; k(i=\mathrm{i} 0) \longrightarrow q j \\
& \quad\}) \\
& (\operatorname{inc}(q j))
\end{aligned}
$$

double, cubically

double : $\mathbb{Z} \longrightarrow \mathbb{Z}$
double $(x-y)=\left(2^{*} x\right)-\left(2^{*} y\right)$
double (quot $\left.x y x^{\prime} y^{\prime} p i\right)=$
quot $\left(2^{*} \boldsymbol{x}\right)\left(2^{*} y\right)\left(2^{*} \boldsymbol{x}\right)\left(2^{*} y^{\prime}\right) \mathrm{p}^{\prime} \boldsymbol{i}$
where

$$
\begin{aligned}
& \mathrm{p}^{\prime}: 2^{*} x+2^{*} y^{\prime} \equiv 2^{*} x^{\prime}+2^{*} y \\
& \mathrm{p}^{\prime}=\text { arithmetic-proof } x y p
\end{aligned}
$$

double, cubically

A non-unary example: \mathbb{Z} addition

A problem:

What if there is no way to continuously deform slidingLid $p_{o} p_{1} q_{0}$ i1
(a homotopically transformed proof)
into

$$
q_{1}
$$

(an arithmetic proof about natural numbers)

Solution: set-truncating

We define \mathbb{Z} not to have any holes by adding a third constructor (à la HoTT §6.10):

$$
\begin{aligned}
& \text { data } \mathbb{Z}: \text { Set where } \\
& --: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{Z} \\
& \text { quot: } \forall x y x^{\prime} y^{\prime} \rightarrow \text { Same } x y x^{\prime} y^{\prime} \rightarrow x-y \equiv x^{\prime}-y^{\prime} \\
& \text { trunc }: \forall\{x y: \mathbb{Z}\} \rightarrow(p q: x \equiv y) \rightarrow p \equiv q
\end{aligned}
$$

More cases to handle in functions, but more possibilities in constructing results.

We didn't talk about

- Details of equivalences
- Univalence (a theorem in CTT) and glueing in general

Future project ideas

- Prove $(\mathbb{Z},+)$ is an Abelian group
- Prove $\mathbb{Z} \simeq \operatorname{Int}$ (from the standard library)
- $\operatorname{Prove} \mathbb{Z} \simeq$ base \equiv base (in Circle)

