Cubical Type Theory: From i0 to i1

Gergő Érdi http://gergo.erdi.hu/

Haskell.SG December 2018.

How many Agda programmers does it take to change a lightbulb?

How many Agda programmers does it take to change a lightbulb?

Are you kidding me? It takes two PhD's six months just to prove that the socket and the bulb are wound in the same direction!

1. Martin-Löf Type Theory

- Single unified language for objects and propositions (c.f. ZF set theory + FOL)
- Dependent types give us predicate logic (via Curry-Howard)
- Type formers, eliminators, β -rules

- U: the type of types (called Set in Agda)
- ⊥, ⊤, Bool
- Π, Σ
- Inductive datatypes (e.g. ℕ)

$\mathsf{Id} A x y : \mathsf{U}$

Its sole constructor is refl : $\forall x \rightarrow Id x x$

Definitional equality: everything can only be equal to itself.

Axiom J: eliminator for identity type

$$J: (P: (x y: A) \to Id x y \to Set) \to (\forall x \to P x x (refl x)) \to \forall \{x y: A\} (p: Id x y) \to P x y p$$

From this, we can prove that Id is an equivalence relation.

Properties of Id (cont.d)

Uniqueness of identity types:

$$\mathsf{UIP}: \{x \ y : A\} \longrightarrow (p \ q : \mathsf{Id} \ x \ y) \longrightarrow \mathsf{Id} \ p \ q$$

Axiom K: equivalent to UIP

$$K : \forall (x : A) \to (P : \operatorname{Id} x x \to \operatorname{Set}) \to$$
$$P(\operatorname{refl} x) \to$$
$$\forall (p : \operatorname{Id} x x) \to Pp$$

UIP / K are independent of (but compatible with) MLTT.

Function extensionality:

$$\begin{aligned}
\mathsf{funExt} &: (fg: (x:A) \to Bx) \to \\ (\forall x \to \mathsf{Id} (fx) (gx)) \to \\ \mathsf{Id} fg
\end{aligned}$$

Function extensionality is independent of (but compatible with) MLTT.

2. Topological homotopies

Spaces and paths

In some topological space A and two points x, y : A, a *path* p from x to y (or, $p : x \rightsquigarrow y$) is:

$$\begin{array}{l} p:[0,1] \rightarrow A, p \in C \text{ s.t.} \\ p(0)=x, p(1)=y \end{array}$$

If $f,g:A \rightarrow B, f,g \in C,$ then a homotopy H between f and g is:

$$\begin{split} H &: A \times [0,1] \rightarrow B, H \in C \text{ s.t.} \\ H(x,0) &= f(x) \\ H(x,1) &= g(x) \end{split}$$

Homotopies between paths

If $p, q: x \rightsquigarrow y$, then as a special case, a homotopy H between p and q is:

$$H : [0,1] \times [0,1] \to A, H \in C \text{ s.t.}$$

$$H(i,0) = p(i)$$

$$H(i,1) = q(i)$$

$$H(0,j) = x$$

$$H(1,j) = y$$
This can be iterated.

Paths between points are a bit like equalities between them: they are reflexive (trivial path), symmetric (just go backwards) and transitive (concatenation).

But what does that mean?

3. Homotopy Type Theory

Basic idea: types are spaces, and the paths in that space (written _=_) correspond to equalities.

- This only makes sense if all functions are continuous
 - Trivially true for discrete spaces
- Paths have structure, so UIP doesn't hold
- Paths are purely synthetic, we're not putting $[0,1]\subseteq\mathbb{R}$ at the base of our formal system...

Are there any non-discrete spaces?

- U is a type, so some types A and B are points in that space. When is there a path between them?
- Univalence axiom: the paths in U are equivalent to equivalences, i.e. invertible functions modulo paths. This is highy desirable!
- Different equivalences yield different paths (e.g. *id* vs. *not* for Bool)
- Function extensionality can be proven from UA

Might as well use this rich structure of paths!

Higher inductive type: similar to an inductive datatype, but constructors for not only points, but paths, paths between paths, etc.

```
data Circle : Set where
base : Circle
loop : base ≡ base
```


This *generates* a space via the algebra of paths; e.g. trans loop loop : base \equiv base.

We can represent the integers \mathbb{Z} as $\mathbb{N} \times \mathbb{N} / \sim$ where $(x,y) \sim (x',y') := (x+y') \equiv (x'+y).$

Written out as a HIT:

Same : $\mathbb{N} \to \mathbb{N} \to \mathbb{N} \to \mathbb{N} \to _$ Same $x y x' y' = x + y' \equiv x' + y$

data \mathbb{Z} : Set where _-_: $\mathbb{N} \to \mathbb{N} \to \mathbb{Z}$ quot : $\forall x y x' y' \to \text{Same } x y x' y'$ $\to x - y \equiv x' - y'$

Continuity in this space: representation-invariance.

Enforced by the type system: functions are defined over points and paths at the same time.

For example, if we want to do doubling:

double :
$$\mathbb{Z} \to \mathbb{Z}$$

double $(x - y)$ = 2 * x - 2 * y

we also have to give

double (quot
$$x y x' y' eq$$
) =
quot $(2 * x) (2 * y) (2 * x') (2 * y')$ arithmetic-prf

- MLTT, paths as equality, no K
- Univalence added as an axiom
- All functions continuous by construction
- Function extensionality is a theorem
- Higher inductive types (and more...)

Big **BUT**:

- MLTT, paths as equality, no K
- Univalence added as an axiom
- All functions continuous by construction
- Function extensionality is a theorem
- Higher inductive types (and more...)

Big **BUT**: HoTT postulates the Univalence Axiom with no computational content

4. Cubical Type Theory

Representations of paths

- Topology: $p: [0,1] \rightarrow A, p \in C$: "continuously-infinitely detailed", $p(\frac{1}{\pi})$ etc.
- Homotopy Type Theory: p : {0,1} → A? But no UIP, so it does have structure? But not enough to support computation?

Representations of paths

- Topology: $p: [0,1] \rightarrow A, p \in C$: "continuously-infinitely detailed", $p(\frac{1}{\pi})$ etc.
- Homotopy Type Theory: p: {0,1} → A? But no UIP, so it does have structure? But not enough to support computation?
- Cubical Type Theory: $p: I \to A$, where I is some formal version of [0, 1]

I is the free distributive lattice (of countably infinite, distinct direction variables):

i0 i1 : I ~_ : $I \rightarrow I$ _V_ : $I \rightarrow I \rightarrow I$ _A_ : $I \rightarrow I \rightarrow I$

This has decidable equality!

I is the free distributive lattice (of countably infinite, distinct direction variables):

i0 i1 : I ~_ : $I \rightarrow I$ _V_ : $I \rightarrow I \rightarrow I$ _A_ : $I \rightarrow I \rightarrow I$

This has decidable equality!

We then represent a path $p : x \equiv y$ by a function $p : I \rightarrow A$ s.t. p i0 = x and p i1 = y.

Unlike in HoTT, path reflexivity and symmetry are no longer axioms:

refl :
$$\{x : A\} \rightarrow x \equiv x$$

refl $\{x\} = \lambda \ i \rightarrow x$
sym : $\forall \{x \ y : A\} \rightarrow x \equiv y \rightarrow y \equiv x$
sym $p = \lambda \ i \rightarrow p (\sim i)$

Equality-like behaviour

$$\operatorname{cong} : (f \colon A \longrightarrow B) \{x \ y \colon A\} \longrightarrow x \equiv y \longrightarrow f \ x \equiv f \ y$$
$$\operatorname{cong} f \ p = \lambda \ i \longrightarrow f(p \ i)$$

Equality-like behaviour

$$cong : (f: (x : A) \to B x) \{x y : A\} \to (p : x \equiv y) \to PathP(\lambda i \to B(p i)) (f x) (f y) cong f p = \lambda i \to f(p i)$$

Equality-like behaviour

$$\begin{aligned}
& \mathsf{funExt} : \{fg : (x : A) \to B x\} \to \\
& (\forall x \to f x \equiv g x) \to f \equiv g \\
& \mathsf{funExt} \ p = \lambda \ i \to (\lambda \ x \to p \ x \ i)
\end{aligned}$$

What about transitivity?

If $p : x \equiv y$ and $q : y \equiv z$, how do we make

trans
$$p q = \lambda i \rightarrow \begin{cases} p(2i) & \text{if } i \leq 0.5 \\ q(2i-1) & \text{if } i \geq 0.5 \end{cases}$$

Path composition

The primitive operation that supports transitivity, and many other ways of composing paths, is: given the bottom of a "box", and a system of consistent sides, we can construct the lid.

Transitivity via comp

trans : $x \equiv y \longrightarrow y \equiv z \longrightarrow x \equiv z$ trans $p q i = \text{comp} (\lambda \longrightarrow A)$ $(\lambda \{ j (i = i0) \rightarrow x \}$; $i(i = i1) \rightarrow q j$ x p y (inc (p i))pi

i = 1

A sliding version

slidingLid : $(p_0 : x \equiv y) (p_1 : x' \equiv y') (q : x \equiv x') \rightarrow \forall i \rightarrow p_0 i \equiv p_1 i$ slidingLid $p_0 p_1 q i j = \text{comp} (\lambda \longrightarrow A)$ $(\lambda \{ k (j = i0) \rightarrow p_0 (i \land k)$ $; k (j = i1) \rightarrow p_1 (i \land k)$ $; k (i = i0) \rightarrow q j$ }) (inc (q j)) double : $\mathbb{Z} \to \mathbb{Z}$ double (x - y) = (2 * x) - (2 * y)double (quot x y x' y' p i) = quot (2 * x) (2 * y) (2 * x') (2 * y') p' iwhere p' : 2 * x + 2 * y' = 2 * x' + 2 * y

p' = arithmetic-proof *x y p*

double, cubically

A non-unary example: \mathbb{Z} addition

35/39

What if there is no way to continuously deform slidingLid $p_0 p_1 q_0 i1$ (a homotopically transformed proof)

into

 q_1 (an arithmetic proof about natural numbers)

We *define* \mathbb{Z} not to have any holes by adding a third constructor (à la HoTT §6.10):

data \mathbb{Z} : Set where _-_: $\mathbb{N} \to \mathbb{N} \to \mathbb{Z}$ quot : $\forall x y x' y' \to \text{Same } x y x' y' \to x - y \equiv x' - y'$ trunc : $\forall \{x y : \mathbb{Z}\} \to (p q : x \equiv y) \to p \equiv q$

More cases to handle in functions, but more possibilities in constructing results.

- Details of equivalences
- Univalence (a *theorem* in CTT) and glueing in general

- Prove $(\mathbb{Z}, +)$ is an Abelian group
- Prove $\mathbb{Z} \simeq Int$ (from the standard library)
- Prove $\mathbb{Z} \simeq$ base = base (in Circle)