Matt Brown, Jens Palsberg: Breaking Through the Normalization Barrier: A Self-Interpreter for F_{ω} (POPL 2016)

> Gergő Érdi http://gergo.erdi.hu/

Papers We Love.SG, November 2015.

- Data: in normal form
- Quotation: injective & total mapping of terms to data (not a function defined in the language! it is necessarily intensional)
- Shallow vs. deep representation: supports one or multiple operations
- Related: *embedding*, but that is not necessarily data

To summarize, the quotation mapping [:] maps some closed term $e: \tau$ to another, normal-form term [e]: Exp τ .

Note that Exp might be a constant type family, i.e. the representation might be untyped.

 Unquoter: a function, defined in the language, that, when applied on a quoted term, β-reduces to the term itself:

unquote
$$[e] \longrightarrow_{\beta}^{*} e$$

 Reducer: a function, defined in the language, that, when applied on a quoted term, β-reduces to the representation of the normal form of the term:

 $e \longrightarrow^*_{\beta} v, \qquad v \text{ is in normal form}$

then

reduce
$$[e] \longrightarrow_{\beta}^{*} [v]$$

Intuitive example

Suppose we have a language with

- Natural numbers
- Addition
- Strings

The following are all different terms of this language:

- 3 + 5
- ▶ "3 + 5"
- ▶ 8
- "8"

Then, by using a string-based representation (Exp _ = String), we have

unquote("3 + 5") \longrightarrow^* 3 + 5 reduce("3 + 5") \longrightarrow^* "8"

$$\langle \text{term } e \rangle \models x \mid \lambda x \quad .e \mid e_1 e_2$$

The untyped lambda calculus

- Not strongly normalizing (e.g. $(\lambda x.x x) (\lambda x.x x))$
- Self-interpreter is no big deal & necessarily partial

$$const = \lambda x.\lambda y.x$$

The simply typed lambda calculus

- Strongly normalizing
- No type-level abstractions (incl. polymorphism)!
- Needs "base types"
- How would you type a generic self-interpreter...?

```
const : A \to B \to Aconst = \lambda x : A.\lambda y : B.x
```

System F

- Strongly normalizing
- Parametric polymorphism (note: at any rank!)
- "Atomic" types
- Self-interpreter possible?

$$const: \forall \alpha : \star.(\alpha \to \forall \beta : \star.(\beta \to \alpha))$$
$$const = \Lambda \alpha : \star.\lambda x : \alpha.\Lambda\beta : \star.\lambda y : \beta.x$$

System F_ω

- Strongly normalizing
- Parametric polymorphism (note: at any rank!)
- ► Type constructors, type transformers, ...
- Self-interpreter possible?

$$const: \forall \alpha : \star.(\alpha \to \forall \beta : \star.(\beta \to \alpha))$$
$$const = \Lambda \alpha : \star.\lambda x : \alpha.\Lambda\beta : \star.\lambda y : \beta.x$$

Is it possible to write a self-interpreter for a strongly normalizing $\lambda\text{-calculus?}$

Is it possible to write a self-interpreter for a strongly normalizing $\lambda\text{-calculus?}$

• Folklore says no.

Is it possible to write a self-interpreter for a strongly normalizing $\lambda\text{-calculus?}$

- Folklore says no.
- Previous results: interpretation of F in F_ω, F_ω in F⁺_ω (by encoding, for example, F ∀-types at * as F_ω type constructors at * → *)
- The current paper's authors have also, previously, interpreted F⁺_ω and System U in System U (which is **not** strongly normalizing).

Definition

Let $\operatorname{Univ}(\mathbb{N} \to \mathbb{N})$ be the set of *universial functions* for $\mathbb{N} \to \mathbb{N}$: its elements are the functions $u : (\mathbb{N} \times \mathbb{N}) \hookrightarrow \mathbb{N}$ such that for every total, computable function $f : \mathbb{N} \to \mathbb{N}$, we have

$$\forall x \in \mathbb{N} : u([f], x) = f(x)$$

(note that $[\cdot]$ here maps total, computable functions to \mathbb{N})

Lemma

If $u \in \text{Univ}(\mathbb{N} \to \mathbb{N})$, then the Cantor-esque function $d := x \mapsto u(x, x) + 1$ is not total

Proof.

Suppose $u \in \text{Univ}(\mathbb{N} \to \mathbb{N})$ and d is total; then

$$d(\llbracket d \rrbracket) = u(\llbracket d \rrbracket, \llbracket d \rrbracket) + 1 = d(\llbracket d \rrbracket) + 1$$

which is a contradiction.

Theorem

If $u \in \text{Univ}(\mathbb{N} \to \mathbb{N})$, then u isn't total

Proof.

Suppose *u* is total. Then, $\forall x \in \mathbb{N}$, u(x, x) is defined; so we have

$$d(x) = u(x, x) + 1$$

which is a perfectly cromulent definition (since $\cdot + 1$ is also total). In other words, *d* would be total. This contradicts our previous lemma.

If we have a self-interpreter u for F_{ω} , the strong normalization of F_{ω} means $(u \ e)$ has a normal form for any well-typed e; in other words, u is total. So can we transform the previous theorem to say that u can't exist?

If we have a self-interpreter u for F_{ω} , the strong normalization of F_{ω} means $(u \ e)$ has a normal form for any well-typed e; in other words, u is total. So can we transform the previous theorem to say that u can't exist?

Suppose we have an F_{ω} -self-interpreter u, and let's set $d := \lambda x . \lambda y . ((u \ x) \ x)$. Then, if $d \begin{bmatrix} d \\ u \end{bmatrix}$ would be well-typed, we'd have

$$d \left[d \right] \equiv_{\beta} \lambda y.((u \left[d \right]) \left[d \right]) \equiv_{\beta} \lambda y.(d \left[d \right])$$

which is clearly a contradiction (it'd lead to two "competing" normal forms $v \equiv_{\beta} \lambda y.v$). So we can transform the lemma.

If we have a self-interpreter u for F_{ω} , the strong normalization of F_{ω} means $(u \ e)$ has a normal form for any well-typed e; in other words, u is total. So can we transform the previous theorem to say that u can't exist?

Suppose we have an F_{ω} -self-interpreter u, and let's set $d := \lambda x . \lambda y . ((u \ x) \ x)$. Then, if $d \begin{bmatrix} d \\ u \end{bmatrix}$ would be well-typed, we'd have

$$d \left[d \right] \equiv_{\beta} \lambda y.((u \left[d \right]) \left[d \right]) \equiv_{\beta} \lambda y.(d \left[d \right])$$

which is clearly a contradiction (it'd lead to two "competing" normal forms $v \equiv_{\beta} \lambda y.v$). So we can transform the lemma.

However, just because u, d and [d] are well-typed, it doesn't mean d[d] needs to be well-typed! The diagonalization gadget is not expressible inside F_{ω} . The theorem hasn't been successfully transformed!

Of course, just because one particular proof of impossibility failed, doesn't mean self-interpretation is possible. So the first proof the paper presents is a simple, *shallow* representation that only supports an unquoter.

Let's look at the following example:

- $const: \qquad \forall \alpha : \star . \alpha \to (\forall \beta : \star . \beta \to \alpha)$ $const = \qquad \Lambda \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x$
- *id* : $\forall \alpha : \star . \alpha \to \alpha$
- $id = \Lambda \alpha : \star . \lambda x : \alpha . x$

A cheap & cheerful self-interpreter for $F/F_{\omega}/F_{\omega}^+$

For reference, after inlining the helper definitions, we have

$$foo = (\Lambda \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x) \circ (\forall \alpha : \star . \alpha \to \alpha) (\Lambda \alpha : \star . \lambda x : \alpha . x)$$

A smart-ass non-solution

Why not just represent everything as itself, and set unquote := id?

For reference, after inlining the helper definitions, we have

$$\textit{foo} = (\Lambda \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x) \circ (\forall \alpha : \star . \alpha \rightarrow \alpha) (\Lambda \alpha : \star . \lambda x : \alpha . x)$$

A smart-ass non-solution

Why not just represent everything as itself, and set *unquote* := *id*? Because *foo* is not in normal form, so it isn't data! The type application, and then the outermost term application can be β -reduced away.

For reference, after inlining the helper definitions, we have

$$\textit{foo} = (\Lambda \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x) \circ (\forall \alpha : \star . \alpha \rightarrow \alpha) (\Lambda \alpha : \star . \lambda x : \alpha . x)$$

A smart-ass non-solution

Why not just represent everything as itself, and set *unquote* := *id*? Because *foo* is not in normal form, so it isn't data! The type application, and then the outermost term application can be β -reduced away.

Central idea of the paper: replace the applications with application-markers!

Central idea of the paper: **replace the applications with application-markers**!

Where are all the applications in our example?

$$foo = \boxed{(\Lambda \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x) \circ (\forall \alpha : \star . \alpha \to \alpha)} (\Lambda \alpha : \star . \lambda x : \alpha . x)$$

To ensure there are no (reducable) applications left, let's apply a marker \diamond , which is a free variable, on all terms which are applied on either types or terms:

$$> \boxed{\diamond \Lambda \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x} \circ (\forall \alpha : \star . \alpha \to \alpha) \left(\Lambda \alpha : \star . \lambda x : \alpha . x) \right)$$

$$\diamond \boxed{\diamond \land \alpha : \star . \lambda x : \alpha . \Lambda \beta : \star . \lambda y : \beta . x} \circ (\forall \alpha : \star . \alpha \to \alpha) (\land \alpha : \star . \lambda x : \alpha . x)$$

Of course, \diamond needs to be polymorphic, so we'll need to sprinkle our code with some type applications that duplicate the types of the originally-applied functions:

$$\diamond \circ ((\forall \alpha : \star.\alpha \to \alpha) \to \forall \beta : \star.\beta \to (\forall \alpha : \star.\alpha \to \alpha)) \\ \diamond \circ (\forall \alpha : \star.\alpha \to (\forall \beta : \star.\beta \to \alpha)) \text{ const} \\ \circ (\forall \alpha : \star.\alpha \to \alpha)) \\ id$$

A cheap & cheerful self-interpreter for $F/F_{\omega}/F_{\omega}^+$

If we now close this by putting it under a $\diamond\mbox{-binding }\lambda,$ we have our representation:

$$\begin{bmatrix} foo \end{bmatrix} : \quad \text{Exp} \ (\forall \beta : \star, \beta \to \forall \alpha : \star, \alpha \to \alpha) \\ \begin{bmatrix} foo \end{bmatrix} = \quad \lambda \diamond : (\forall \iota : \star, \iota \to \iota). \\ \diamond \circ ((\forall \alpha : \star, \alpha \to \alpha) \to \forall \beta : \star, \beta \to (\forall \alpha : \star, \alpha \to \alpha)) \\ ((\diamond \circ (\forall \alpha : \star, \alpha \to (\forall \beta : \star, \beta \to \alpha)) \text{ const}) \circ (\forall \alpha : \star, \alpha \to \alpha)) \\ id$$

With

Exp
$$\tau = (\forall \iota : \star . \iota \to \iota) \to \tau$$

and all $\mathrm{unquote}$ needs to do is plug in id (the "un-marker") as the marker:

unquote :
$$\forall \alpha : \star . ((\forall \iota : \star . \iota \to \iota) \to \alpha) \to \alpha$$

unquote = $\Lambda \alpha : \star . \lambda q : (\forall \iota : \star . \iota \to \iota) \to \alpha . q$ id

A cheap & cheerful self-interpreter for $F/F_{\omega}/F_{\omega}^+$

Theorem

If
$$\{\} \vdash e : \tau \text{ then } \{\} \vdash [e] : (\forall \iota : \star . \iota \to \iota) \to \tau$$

Theorem

If
$$\{\} \vdash e : \tau \text{ then unquote } \circ \tau [e] \longrightarrow^* e$$

- Suspend reducability by marking each applied term with a free variable
- Process the representation by plugging in a suitable function for the marker

- Suspend reducability by marking each applied term with a free variable
- Process the representation by plugging in a suitable function for the marker

But is this just a cheap trick? So what if there's a bunch of places where we can apply id?

- Suspend reducability by marking each applied term with a free variable
- Process the representation by plugging in a suitable function for the marker

But is this just a cheap trick? So what if there's a bunch of places where we can apply id?

Not at all!

The marker's type just happens to be the trivial $\iota \rightarrow \iota$ in this shallow unquoter case, but the technique generalizes by mapping subresults (of some type) to a larger result (of some, possibly different, type); i.e., a fold.

The grand result of the paper is a deep self-representation of F_{ω} (unlike the previous, shallow representation, this doesn't readily work in F or F_{ω}^+)

- Deep representation means the same representation supports multiple operations (late binding of the operation)
- Examples from the paper:
 - ▸ isAbs, isNF, size
 - unquote
 - CPS

The grand result of the paper is a deep self-representation of F_ω (unlike the previous, shallow representation, this doesn't readily work in F or F_ω^+)

- Deep representation means the same representation supports multiple operations (late binding of the operation)
- Examples from the paper:
 - ▸ isAbs, isNF, size
 - unquote
 - CPS
- I will only cover it cursorily in this talk; see the paper for details

Given $\{\} \vdash e : \tau$, first τ is transformed into $[\tau]$ by iteratively wrapping each \star -kinded (non-type variable) subtree in a (free type variable) type constructor $F : \star \to \star$ Example:

$$[\forall \alpha : \star . \alpha \to \alpha] = \forall \alpha : \star . \ F \ (F \ \alpha \to F \ \alpha)$$

This means types at κ become types at $[\kappa] := (\star \to \star) \to \kappa$; in particular, types at \star become types at $[\star] = (\star \to \star) \to \star$.

Then, for [e], each λ -abstraction, application, Λ -abstraction, and type application of the term is wrapped into calls of one of four free variables, of types

$$TApp \ F = \forall \alpha : \star. \ F \ [\alpha] \to \forall \beta : \star. (\alpha \to F \ \beta) \to F \ [\beta]$$

Then, for [e], each λ -abstraction, application, Λ -abstraction, and type application of the term is wrapped into calls of one of four free variables, of types

The representation of a term $\{\} \vdash e : \tau$ thus becomes a term $\{\} \vdash [e] : Exp \ (\lambda F : \star \to \star. [\tau]), \text{ with }$

$$Exp = \lambda \alpha : [\star], \forall F : \star \to \star.$$

Abs $F \to App \ F \to TAbs \ F \to TApp \ F \to$
 $F \ (\alpha \ F)$

Note that $Exp[\tau]$ is still parametrized over the choice of $F : \star \to \star$, which is what ultimately allows the late-binding of the choice of operation over the representation.

- F applied (iteratively) only to types of kind ★ ⇒ no need to abstract F's type over kinds
- Parametric (in F) HOAS representation for terms; variables range over representations
- ► A particular operation defines its own choice of *F*, and implements the four "callbacks"
 - ► For unquote, $F = \lambda \alpha : \star. \alpha$, so e.g. app : $\forall \alpha : \star. \forall \beta : \star. (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$
 - ▶ For *isAbs*, $F = \lambda \alpha$: ★. Bool, and so *app* : $\forall \alpha$: ★. $\forall \beta$: ★. Bool → Bool → Bool
 - For size, $F = \lambda \alpha : \star$. Nat, giving app: $\forall \alpha : \star$. $\forall \beta : \star$. Nat \rightarrow Nat \rightarrow Nat