
Conor McBride: The Derivative of a Regular
Type is its Type of One-Hole Contexts

Gergő Érdi
http://gergo.erdi.hu/

Papers We Love.SG, June 2015.

http://gergo.erdi.hu/

Introduction: Zippers

I Gérard Huet: The Zipper (Functional Pearl, 1997): functional
equivalent of a pointer into a data structure: turn a tree-like
structure into a subtree in context.

data Paren α = Leaf α
| Branch (Paren α) (Paren α)

type ParenZ α = ([Either (Paren α) (Paren α)],Paren α)

Introduction: Zippers

I Gérard Huet: The Zipper (Functional Pearl, 1997): functional
equivalent of a pointer into a data structure: turn a tree-like
structure into a subtree in context.

data Paren α = Leaf α
| Branch (Paren α) (Paren α)

type ParenZ α = ([Either (Paren α) (Paren α)],Paren α)

zip :: ParenZ α→ Paren α
zip (path, t) = foldl plug t path

where
plug t2 (Left t1) = Branch t1 t2
plug t1 (Right t2) = Branch t1 t2

Introduction: Zippers

I Gérard Huet: The Zipper (Functional Pearl, 1997): functional
equivalent of a pointer into a data structure: turn a tree-like
structure into a subtree in context.

data Paren α = Leaf α
| Branch (Paren α) (Paren α)

type ParenZ α = ([Either (Paren α) (Paren α)],Paren α)

holes :: Paren α→ [ParenZ α]
holes Leaf { } = []
holes (Branch t1 t2) = [([Left t1], t2), ([Right t2], t1)]

Is there a principled way of coming up with all
this?

{-# LANGUAGE TypeFamilies, TypeOperators #-}
{-# LANGUAGE EmptyDataDecls, EmptyCase #-}
{-# LANGUAGE PatternSynonyms #-}

module ZipperDeriv where
import Prelude hiding (zip, unzip)
import Control .Arrow (first)

Is there a principled way of coming up with all
this?

{-# LANGUAGE TypeFamilies, TypeOperators #-}
{-# LANGUAGE EmptyDataDecls, EmptyCase #-}
{-# LANGUAGE PatternSynonyms #-}

module ZipperDeriv where
import Prelude hiding (zip, unzip)
import Control .Arrow (first)

Sums of products

newtype Const α

x

= Const {unConst :: α}
type 1 = Const ()
pattern 1 = Const ()

type 0 = Const Void

infixl 6⊕
data (⊕) f g

x

= InL

(

f

x)

| InR

(

g

x)

infixl 7⊗
data (⊗) f g

x

= f

x

⊗ g

x

newtype X x = X {unX :: x }

Hey look, it’s a semiring! (modulo handwavy isomorphisms)
So let’s build polynomials!

Sums of products

newtype Const α

x

= Const {unConst :: α}
type 1 = Const ()
pattern 1 = Const ()

type 0 = Const Void

infixl 6⊕
data (⊕) f g

x

= InL

(

f

x)

| InR

(

g

x)

infixl 7⊗
data (⊗) f g

x

= f

x

⊗ g

x

newtype X x = X {unX :: x }

Hey look, it’s a semiring! (modulo handwavy isomorphisms)

So let’s build polynomials!

Sums of products

newtype Const α x = Const {unConst :: α}
type 1 = Const ()
pattern 1 = Const ()

type 0 = Const Void

infixl 6⊕
data (⊕) f g x = InL (f x)

| InR (g x)

infixl 7⊗
data (⊗) f g x = f x ⊗ g x

newtype X x = X {unX :: x }

Hey look, it’s a semiring! (modulo handwavy isomorphisms)
So let’s build polynomials!

Regular types: fixed points of polynomials

The original paper is formulated for polynomials, and fixed points,
in many variables; but for simplicity’s sake, this presentation uses
single-variable polynomials.

newtype µ f = Fix {unFix :: f (µ f)}

This corresponds to regular data types because you can only do
wholesale induction in the datatype definition: the syntax already
only allows for defining non-parametric data types.

Regular types: fixed points of polynomials

The original paper is formulated for polynomials, and fixed points,
in many variables; but for simplicity’s sake, this presentation uses
single-variable polynomials.

newtype µ f = Fix {unFix :: f (µ f)}

This corresponds to regular data types because you can only do
wholesale induction in the datatype definition: the syntax already
only allows for defining non-parametric data types.

Examples!

type Puzzle1F α = 1⊕ (Const α⊗ X)
type Puzzle1 α = µ (Puzzle1F α)

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

pattern Nil =

Fix (InL 1)

pattern Cons x xs =

Fix (InR (Const x ⊗ X xs))

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

pattern Nil = Fix (InL 1)
pattern Cons x xs = Fix (InR (Const x ⊗ X xs))

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

type Puzzle2F α = Const α⊕ (X ⊗ X)
type Puzzle2 α = µ (Puzzle2F α)

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

type ParenF α = Const α⊕ (X ⊗ X)
type Paren α = µ (ParenF α)

pattern Leaf x =

Fix (InL (Const x))

pattern Pair t1 t2 =

Fix (InR (X t1 ⊗ X t2))

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

type ParenF α = Const α⊕ (X ⊗ X)
type Paren α = µ (ParenF α)

pattern Leaf x = Fix (InL (Const x))
pattern Pair t1 t2 = Fix (InR (X t1 ⊗ X t2))

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

type ParenF α = Const α⊕ (X ⊗ X)
type Paren α = µ (ParenF α)

type Puzzle3F α = 1⊕ (Const α⊗ X ⊗ X)
type Puzzle3 α = µ (Puzzle3F α)

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

type ParenF α = Const α⊕ (X ⊗ X)
type Paren α = µ (ParenF α)

type BTreeF α = 1⊕ (Const α⊗ X ⊗ X)
type BTree α = µ (BTreeF α)

pattern Empty =

Fix (InL 1)

pattern Node x t1 t2 =

Fix (InR (Const x ⊗ X t1 ⊗ X t2))

Examples!

type ListF α = 1⊕ (Const α⊗ X)
type List α = µ (ListF α)

type ParenF α = Const α⊕ (X ⊗ X)
type Paren α = µ (ParenF α)

type BTreeF α = 1⊕ (Const α⊗ X ⊗ X)
type BTree α = µ (BTreeF α)

pattern Empty = Fix (InL 1)
pattern Node x t1 t2 = Fix (InR (Const x ⊗ X t1 ⊗ X t2))

What do we expect of a type for holes ∂ f ?

Without even defining what exactly we mean by a hole

I ∂ (f ⊕ g): Either we have an InL value with a hole, or an InR
value with a hole: ∂ f ⊕ ∂ g

I ∂ (f ⊗ g): Either we have a hole in the first component (and
the second is untouched), or the hole is in the second
component: (∂ f ⊗ g)⊕ (f ⊗ ∂ g)

What do we expect of a type for holes ∂ f ?

Without even defining what exactly we mean by a hole

I ∂ (f ⊕ g): Either we have an InL value with a hole, or an InR
value with a hole: ∂ f ⊕ ∂ g

I ∂ (f ⊗ g): Either we have a hole in the first component (and
the second is untouched), or the hole is in the second
component: (∂ f ⊗ g)⊕ (f ⊗ ∂ g)

What do we expect of a type for holes ∂ f ?

We need to be more specific on what a hole is to continue.
So let’s say we want to be able to

I Get all holes into which we can plug a subtree (of the same
type as the original type)

I Plug a subtree into a hole

class Diffable (f :: ∗ → ∗) where
type ∂ f :: ∗ → ∗
holes ′ :: f x → [(∂ f x , x)]
plug ′ :: ∂ f x → x → f x

This should give us an idea of what to do for Const α and X :

I Const α x has no possible positions (of type x):
∂ (Const α) = 0

I X x has exactly one position of type x (no further labelling
needed): ∂ X = 1

What do we expect of a type for holes ∂ f ?

We need to be more specific on what a hole is to continue.
So let’s say we want to be able to

I Get all holes into which we can plug a subtree (of the same
type as the original type)

I Plug a subtree into a hole

class Diffable (f :: ∗ → ∗) where
type ∂ f :: ∗ → ∗
holes ′ :: f x → [(∂ f x , x)]
plug ′ :: ∂ f x → x → f x

This should give us an idea of what to do for Const α and X :

I Const α x has no possible positions (of type x):
∂ (Const α) = 0

I X x has exactly one position of type x (no further labelling
needed): ∂ X = 1

Looks familiar?

type ∂ (Const α) = 0
type ∂ X = 1
type ∂ (f ⊕ g) = ∂ f ⊕ ∂ g
type ∂ (f ⊗ g) = (∂ f ⊗ g)⊕ (f ⊗ ∂ g)

Surprise! Turns out using the names Diffable and ∂ (and
“Derivative” in the paper’s title) was a reasonable choice!

See the source code of the slides for the full implementation of the
Diffable typeclass for Const α, X , f ⊕ g and f ⊗ g .

Looks familiar?

type ∂ (Const α) = 0
type ∂ X = 1
type ∂ (f ⊕ g) = ∂ f ⊕ ∂ g
type ∂ (f ⊗ g) = (∂ f ⊗ g)⊕ (f ⊗ ∂ g)

Surprise! Turns out using the names Diffable and ∂ (and
“Derivative” in the paper’s title) was a reasonable choice!

See the source code of the slides for the full implementation of the
Diffable typeclass for Const α, X , f ⊕ g and f ⊗ g .

Looks familiar?

type ∂ (Const α) = 0
type ∂ X = 1
type ∂ (f ⊕ g) = ∂ f ⊕ ∂ g
type ∂ (f ⊗ g) = (∂ f ⊗ g)⊕ (f ⊗ ∂ g)

Surprise! Turns out using the names Diffable and ∂ (and
“Derivative” in the paper’s title) was a reasonable choice!

See the source code of the slides for the full implementation of the
Diffable typeclass for Const α, X , f ⊕ g and f ⊗ g .

Making a zipper from holes

We now have a way of taking apart one level of an inductive data
structure by having a type ∂ f which has a hole in it.

We can turn this into a type Zipper f (a zipper for µ f) by
repeatedly choosing a hole and putting either one more level of
data structre into it, or finishing with a µ f :

type D f = ∂ f (µ f)

holes :: (Diffable f)⇒ µ f → [(D f , µ f)]
holes = holes ′ ◦ unFix

plug :: (Diffable f)⇒ D f → µ f → µ f
plug df = Fix ◦ plug ′ df

type Zipper f = ([D f], µ f)

zip :: (Diffable f)⇒ Zipper f → µ f
zip (path, t) = foldl (flip plug) t path

unzip :: (Diffable f)⇒ Zipper f → [Zipper f]
unzip (dfs, t) = map (first (:dfs)) (holes t)

Making a zipper from holes

We now have a way of taking apart one level of an inductive data
structure by having a type ∂ f which has a hole in it.
We can turn this into a type Zipper f (a zipper for µ f) by
repeatedly choosing a hole and putting either one more level of
data structre into it, or finishing with a µ f :

type D f = ∂ f (µ f)

holes :: (Diffable f)⇒ µ f → [(D f , µ f)]
holes = holes ′ ◦ unFix

plug :: (Diffable f)⇒ D f → µ f → µ f
plug df = Fix ◦ plug ′ df

type Zipper f = ([D f], µ f)

zip :: (Diffable f)⇒ Zipper f → µ f
zip (path, t) = foldl (flip plug) t path

unzip :: (Diffable f)⇒ Zipper f → [Zipper f]
unzip (dfs, t) = map (first (:dfs)) (holes t)

Example: all zippers of a parenthesization

Let’s enumerate all possible zippers for a given container (by
recursively calling unzip):

unzips :: (Diffable f)⇒ µ f → [Zipper f]
unzips t = go ([], t)

where
go z = z : concatMap go (unzip z)

We are going to use this to enumerate all zippers of this type:

type Paren α = µ (Const α⊕ (X ⊗ X))
pattern Leaf x = Fix (InL (Const x))
pattern Pair t1 t2 = Fix (InR (X t1 ⊗ X t2))

Example: all zippers of a parenthesization

Replace with a marker every possible pointed subtree:

probe :: α→ Paren α→ [Paren α]
probe marker = map mark ◦ unzips

where
mark (z , t) = zip (z , Leaf marker)

Example: all zippers of a parenthesization

An example parenthesization:

p :: Paren (Maybe Char)
p = (Leaf (Just ’A’) ‘Pair ‘ Leaf (Just ’B’)) ‘Pair ‘ (Leaf (Just ’C’) ‘Pair ‘ Leaf (Just ’D’))

DCBA

Example: all zippers of a parenthesization

An example parenthesization:

p :: Paren (Maybe Char)
p = (Leaf (Just ’A’) ‘Pair ‘ Leaf (Just ’B’)) ‘Pair ‘ (Leaf (Just ’C’) ‘Pair ‘ Leaf (Just ’D’))

CBADBABA

DCADCBDC

	Is there a principled way of coming up with all this?

