Conor McBride: The Derivative of a Regular Type is its Type of One-Hole Contexts

Gergő Érdi
http://gergo.erdi.hu/

Papers We Love.SG, June 2015.

Introduction: Zippers

- Gérard Huet: The Zipper (Functional Pearl, 1997): functional equivalent of a pointer into a data structure: turn a tree-like structure into a subtree in context.

$$
\begin{aligned}
& \text { data Paren } \alpha=\text { Leaf } \alpha \\
& \qquad \text { Branch }(\text { Paren } \alpha)(\text { Paren } \alpha) \\
& \text { type ParenZ } \alpha=([\text { Either }(\text { Paren } \alpha)(\text { Paren } \alpha)], \text { Paren } \alpha)
\end{aligned}
$$

Introduction: Zippers

- Gérard Huet: The Zipper (Functional Pearl, 1997): functional equivalent of a pointer into a data structure: turn a tree-like structure into a subtree in context.

$$
\begin{aligned}
& \text { data Paren } \alpha=\text { Leaf } \alpha \\
& \qquad \text { Branch }(\text { Paren } \alpha)(\text { Paren } \alpha) \\
& \text { type ParenZ } \alpha=([\text { Either }(\text { Paren } \alpha)(\text { Paren } \alpha)] \text {, Paren } \alpha) \\
& \text { zip :: Paren } Z \alpha \rightarrow \text { Paren } \alpha \\
& \text { zip }(\text { path } t)=\text { foldl plug } t \text { path } \\
& \text { where } \\
& \quad \text { plug } t 2(\text { Left } t 1)=\text { Branch } t 1 \text { t2 } \\
& \text { plug } t 1(\text { Right } t 2)=\text { Branch } t 1 \text { t2 }
\end{aligned}
$$

Introduction: Zippers

- Gérard Huet: The Zipper (Functional Pearl, 1997): functional equivalent of a pointer into a data structure: turn a tree-like structure into a subtree in context.

```
data Paren \alpha=Leaf \alpha
    Branch (Paren \alpha) (Paren \alpha)
type ParenZ \alpha = ([Either (Paren \alpha) (Paren \alpha)], Paren \alpha)
holes :: Paren \alpha [ [ParenZ \alpha]
holes Leaf { } = []
holes (Branch t1 t2) = [([Left t1],t2),([Right t2],t1)]
```


Is there a principled way of coming up with all this?

Is there a principled way of coming up with all this?

\{-\# LANGUAGE TypeFamilies, TypeOperators \#-\}
\{-\# LANGUAGE EmptyDataDecls, EmptyCase \#- $\}$
\{-\# LANGUAGE PatternSynonyms \#-\}
module ZipperDeriv where
import Prelude hiding (zip, unzip)
import Control.Arrow (first)

Sums of products

$$
\begin{aligned}
& \text { newtype Const } \alpha=\text { Const }\{\text { unConst }:: \alpha\} \\
& \text { type } \mathbf{1}=\text { Const }() \\
& \text { pattern } \mathbf{1}=\text { Const }() \\
& \text { type } \mathbf{0}=\text { Const Void } \\
& \text { infixl } 6 \oplus \\
& \text { data }(\oplus) f g=\ln L \quad f \\
& \\
& \text { infixl } 7 \otimes \\
& \text { data }(\otimes) f g=f \quad \ln R \quad g
\end{aligned}
$$

Sums of products

```
newtype Const \(\alpha=\) Const \(\{\) unConst :: \(\alpha\}\)
type \(1=\) Const ()
pattern \(1=\) Const ()
type \(\mathbf{0}=\) Const Void
infixl \(6 \oplus\)
data \((\oplus) f g=\ln L \quad f\)
                                    \(\mid \ln R g\)
infixl \(7 \otimes\)
data \((\otimes) f g \quad=f \quad \otimes g\)
```

Hey look, it's a semiring! (modulo handwavy isomorphisms)

Sums of products

```
newtype Const \(\alpha x=\) Const \(\{\) unConst \(:: \alpha\}\)
type \(1=\) Const ()
pattern \(1=\) Const ()
type \(\mathbf{0}=\) Const Void
infixl \(6 \oplus\)
data \((\oplus) f g x=\ln L(f x)\)
                        \(\mid \ln R(g x)\)
infixl \(7 \otimes\)
data \((\otimes) f g x=f x \otimes g x\)
newtype \(X x=X\{u n X:: x\}\)
```

Hey look, it's a semiring! (modulo handwavy isomorphisms) So let's build polynomials!

Regular types: fixed points of polynomials

The original paper is formulated for polynomials, and fixed points, in many variables; but for simplicity's sake, this presentation uses single-variable polynomials.

$$
\text { newtype } \mu f=\text { Fix }\{\text { unFix :: } f(\mu f)\}
$$

Regular types: fixed points of polynomials

The original paper is formulated for polynomials, and fixed points, in many variables; but for simplicity's sake, this presentation uses single-variable polynomials.

$$
\text { newtype } \mu f=\text { Fix }\{\text { unFix :: } f(\mu f)\}
$$

This corresponds to regular data types because you can only do wholesale induction in the datatype definition: the syntax already only allows for defining non-parametric data types.

Examples!

type Puzzle1F $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X)$
type Puzzle1 $\quad \alpha=\mu($ Puzzle1F $\alpha)$

Examples!

type ListF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X)$
 type List $\quad \alpha=\mu($ List $\mathcal{L})$

pattern Nil $=$
pattern Cons $\times x s=$

Examples!

$$
\begin{aligned}
& \text { type ListF } \alpha=\mathbf{1} \oplus(\text { Const } \alpha \otimes X) \\
& \text { type List } \quad \alpha=\mu(\text { ListF } \alpha) \\
& \\
& \text { pattern Nil } \quad=\text { Fix }(\operatorname{InL} \mathbf{1}) \\
& \text { pattern Cons } x \times s=\text { Fix }(\ln R(\text { Const } x \otimes X x s))
\end{aligned}
$$

Examples!

> type ListF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X)$
> type List $\quad \alpha=\mu($ ListF $\alpha)$
type Puzzle2F $\alpha=$ Const $\alpha \oplus(X \otimes X)$ type Puzzle2 $\quad \alpha=\mu($ Puzzle2F $\alpha)$

Examples!

$$
\begin{aligned}
& \text { type ListF } \alpha=\mathbf{1} \oplus(\text { Const } \alpha \otimes X) \\
& \text { type List } \quad \alpha=\mu(\text { List } \alpha)
\end{aligned}
$$

type ParenF $\alpha=$ Const $\alpha \oplus(X \otimes X)$

$$
\text { type Paren } \alpha=\mu(\text { ParenF } \alpha)
$$

pattern Leaf $x=$ pattern Pair t1 t2 =

Examples!

$$
\begin{aligned}
& \text { type ListF } \alpha=\mathbf{1} \oplus(\text { Const } \alpha \otimes X) \\
& \text { type List } \quad \alpha=\mu(\text { List } \alpha)
\end{aligned}
$$

```
type ParenF \alpha = Const }\alpha\oplus(X\otimesX
type Paren }\alpha=\mu(\mathrm{ ParenF }\alpha
```

```
pattern Leaf x = Fix (InL (Const x))
pattern Pair t1 t2 = Fix (InR (X t1\otimesX t2))
```


Examples!

> type ListF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X)$ type List $\quad \alpha=\mu($ List $\alpha)$

```
type ParenF \alpha = Const }\alpha\oplus(X\otimesX
type Paren }\alpha=\mu(\mathrm{ ParenF }\alpha
```

```
type Puzzle3F \alpha=\mathbf{1}}\oplus(\mathrm{ Const }\alpha\otimesX\otimesX
type Puzzle3 }\alpha=\mu(\mathrm{ Puzzle3F }\alpha
```


Examples!

type ListF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X)$
type List $\quad \alpha=\mu($ ListF $\alpha)$
type ParenF $\alpha=$ Const $\alpha \oplus(X \otimes X)$
type Paren $\quad \alpha=\mu($ ParenF $\alpha)$
type B TreeF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X \otimes X)$
type BTree $\quad \alpha=\mu(B T r e e F ~ \alpha)$
pattern Empty
pattern Node \times t1 $t 2=$

Examples!

type ListF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X)$
type List $\quad \alpha=\mu($ ListF $\alpha)$
type ParenF $\alpha=$ Const $\alpha \oplus(X \otimes X)$
type Paren $\quad \alpha=\mu($ ParenF $\alpha)$
type B TreeF $\alpha=\mathbf{1} \oplus($ Const $\alpha \otimes X \otimes X)$
type BTree $\quad \alpha=\mu(B T r e e F ~ \alpha)$
pattern Empty $\quad=$ Fix $(\operatorname{InL} 1)$
pattern Node $x t 1 t 2=$ Fix $(\operatorname{InR}($ Const $x \otimes X t 1 \otimes X t 2))$

What do we expect of a type for holes ∂f ?

Without even defining what exactly we mean by a hole

What do we expect of a type for holes ∂f ?

Without even defining what exactly we mean by a hole

- $\partial(f \oplus g)$: Either we have an $\operatorname{In} L$ value with a hole, or an $\operatorname{In} R$ value with a hole: $\partial f \oplus \partial g$
- $\partial(f \otimes g)$: Either we have a hole in the first component (and the second is untouched), or the hole is in the second component: $(\partial f \otimes g) \oplus(f \otimes \partial g)$

What do we expect of a type for holes ∂f ?

We need to be more specific on what a hole is to continue.
So let's say we want to be able to

- Get all holes into which we can plug a subtree (of the same type as the original type)
- Plug a subtree into a hole
class Diffable $(f:: * \rightarrow *)$ where
type $\partial f:: * \rightarrow *$
holes' $:: f x \rightarrow[(\partial f x, x)]$
plug' $:: \partial f x \rightarrow x \rightarrow f x$

What do we expect of a type for holes ∂f ?

We need to be more specific on what a hole is to continue.
So let's say we want to be able to

- Get all holes into which we can plug a subtree (of the same type as the original type)
- Plug a subtree into a hole
class Diffable $(f:: * \rightarrow *)$ where

$$
\begin{aligned}
& \text { type } \partial f:: * \rightarrow * \\
& \text { holes }^{\prime}:: f x \rightarrow[(\partial f x, x)] \\
& \text { plug }^{\prime}:: \partial f x \rightarrow x \rightarrow f x
\end{aligned}
$$

This should give us an idea of what to do for Const α and X :

- Const αx has no possible positions (of type x): $\partial($ Const $\alpha)=\mathbf{0}$
- $X x$ has exactly one position of type x (no further labelling needed): $\partial X=\mathbf{1}$

Looks familiar?

type $\partial($ Const $\alpha)=\mathbf{0}$
type $\partial X=\mathbf{1}$
type $\partial(f \oplus g)=\partial f \oplus \partial g$
type $\partial(f \otimes g)=(\partial f \otimes g) \oplus(f \otimes \partial g)$

Looks familiar?

$$
\begin{aligned}
& \text { type } \partial(\text { Const } \alpha)=\mathbf{0} \\
& \text { type } \partial X=\mathbf{1} \\
& \text { type } \partial(f \oplus g)=\partial f \oplus \partial g \\
& \text { type } \partial(f \otimes g)=(\partial f \otimes g) \oplus(f \otimes \partial g)
\end{aligned}
$$

Surprise! Turns out using the names Diffable and ∂ (and "Derivative" in the paper's title) was a reasonable choice!

Looks familiar?

$$
\begin{aligned}
& \text { type } \partial(\text { Const } \alpha)=\mathbf{0} \\
& \text { type } \partial X=\mathbf{1} \\
& \text { type } \partial(f \oplus g)=\partial f \oplus \partial g \\
& \text { type } \partial(f \otimes g)=(\partial f \otimes g) \oplus(f \otimes \partial g)
\end{aligned}
$$

Surprise! Turns out using the names Diffable and ∂ (and "Derivative" in the paper's title) was a reasonable choice!

See the source code of the slides for the full implementation of the Diffable typeclass for Const $\alpha, X, f \oplus g$ and $f \otimes g$.

Making a zipper from holes

We now have a way of taking apart one level of an inductive data structure by having a type ∂f which has a hole in it.

Making a zipper from holes

We now have a way of taking apart one level of an inductive data structure by having a type ∂f which has a hole in it. We can turn this into a type Zipper f (a zipper for μf) by repeatedly choosing a hole and putting either one more level of data structre into it, or finishing with a μf :

$$
\begin{aligned}
& \text { type } D f=\partial f(\mu f) \\
& \text { holes }::(\text { Diffable } f) \Rightarrow \mu f \rightarrow[(D f, \mu f)] \\
& \text { holes }=\text { holes' } \circ \text { unFix } \\
& \text { plug }::(\text { Diffable } f) \Rightarrow D f \rightarrow \mu f \rightarrow \mu f \\
& \text { plug } d f=\text { Fix } \circ \text { plug' } d f \\
& \text { type Zipper } f=([D f], \mu f) \\
& \text { zip }::(\text { Diffable } f) \Rightarrow \text { Zipper } f \rightarrow \mu f \\
& \text { zip }(\text { path, } t)=\text { foldl (flip plug }) t \text { path } \\
& \text { unzip }::(\text { Diffable } f) \Rightarrow \text { Zipper } f \rightarrow[\text { Zipper } f] \\
& \text { unzip }(d f s, t)=\text { map }(\text { first }(: d f s))(\text { holes } t)
\end{aligned}
$$

Example: all zippers of a parenthesization

Let's enumerate all possible zippers for a given container (by recursively calling unzip):

$$
\begin{aligned}
& \text { unzips :: (Diffable } f) \Rightarrow \mu f \rightarrow[\text { Zipper } f] \\
& \text { unzips } t=\text { go }([], t) \\
& \text { where } \\
& \quad \text { go } z=z \text { : concatMap go (unzip } z)
\end{aligned}
$$

We are going to use this to enumerate all zippers of this type:

$$
\begin{array}{ll}
\text { type Paren } \alpha & =\mu(\text { Const } \alpha \oplus(X \otimes X)) \\
\text { pattern Leaf } x & =\text { Fix }(\operatorname{lnL}(\operatorname{Const} x)) \\
\text { pattern Pair } t 1 \text { t2 } & =\text { Fix }(\ln R(X t 1 \otimes X t 2))
\end{array}
$$

Example: all zippers of a parenthesization

Replace with a marker every possible pointed subtree:
probe :: $\alpha \rightarrow$ Paren $\alpha \rightarrow$ [Paren α]
probe marker $=$ map mark \circ unzips
where

$$
\operatorname{mark}(z, t)=\text { zip }(z, \text { Leaf marker })
$$

Example: all zippers of a parenthesization

An example parenthesization:

```
p :: Paren (Maybe Char)
p=(Leaf (Just 'A') 'Pair'Leaf (Just 'B')) 'Pair' (Leaf (Just 'C')
```


Example: all zippers of a parenthesization

An example parenthesization:

```
p :: Paren (Maybe Char)
p=(Leaf (Just 'A') 'Pair'Leaf (Just 'B')) 'Pair' (Leaf (Just 'C')
```


