Conor McBride: The Derivative of a Regular Type is its Type of One-Hole Contexts

Gergő Érdi http://gergo.erdi.hu/

Papers We Love.SG, June 2015.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

► Gérard Huet: *The Zipper* (Functional Pearl, 1997): functional equivalent of a pointer into a data structure: turn a tree-like structure into a subtree in context.

data Paren α = Leaf α | Branch (Paren α) (Paren α) **type** ParenZ α = ([Either (Paren α) (Paren α)], Paren α)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Introduction: Zippers

 Gérard Huet: The Zipper (Functional Pearl, 1997): functional equivalent of a pointer into a data structure: turn a tree-like structure into a subtree in context.

> **data** Paren α = Leaf α | Branch (Paren α) (Paren α) **type** ParenZ α = ([Either (Paren α) (Paren α)], Paren α)

> > ・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

$$zip :: ParenZ \ lpha o Paren \ lpha$$

 $zip (path, t) = foldl plug t path$
where
 $plug t2 (Left t1) = Branch t1 t2$
 $plug t1 (Right t2) = Branch t1 t2$

Introduction: Zippers

 Gérard Huet: The Zipper (Functional Pearl, 1997): functional equivalent of a pointer into a data structure: turn a tree-like structure into a subtree in context.

> data Paren α = Leaf α | Branch (Paren α) (Paren α) type ParenZ α = ([Either (Paren α) (Paren α)], Paren α)

holes :: Paren $\alpha \rightarrow [ParenZ \ \alpha]$ holes Leaf { } = [] holes (Branch t1 t2) = [([Left t1], t2), ([Right t2], t1)]

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Is there a principled way of coming up with all this?

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Is there a principled way of coming up with all this?

{-# LANGUAGE TypeFamilies, TypeOperators #-}
{-# LANGUAGE EmptyDataDecls, EmptyCase #-}
{-# LANGUAGE PatternSynonyms #-}
module ZipperDeriv where
import Prelude hiding (zip, unzip)
import Control.Arrow (first)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Sums of products

newtype Const $\alpha = Const \{unConst :: \alpha\}$ **type 1** = Const () **pattern 1** = Const () **type 0** = Const Void **infixl** 6 \oplus **data** (\oplus) f g = InL f | InR g **infixl** 7 \otimes **data** (\otimes) f g = f \otimes g

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sums of products

newtype Const $\alpha = Const \{unConst :: \alpha\}$ **type 1** = Const () **pattern 1** = Const () **type 0** = Const Void **infixl** 6 \oplus **data** (\oplus) f g = InL f | InR g **infixl** 7 \otimes **data** (\otimes) f g = f \otimes g

Hey look, it's a semiring! (modulo handwavy isomorphisms)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Sums of products

newtype Const α x = Const { unConst :: α } type $\mathbf{1} = Const$ () pattern $\mathbf{1} = Const$ () type **0** = Const Void infixl $6 \oplus$ data (\oplus) f g x = lnL (f x) | InR(g x)infixl $7 \otimes$ data (\otimes) f g x = f x \otimes g x

newtype $X = X \{ unX :: x \}$

Hey look, it's a semiring! (modulo handwavy isomorphisms) So let's build polynomials!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The original paper is formulated for polynomials, and fixed points, in many variables; but for simplicity's sake, this presentation uses single-variable polynomials.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

newtype μ *f* = *Fix* { *unFix* :: *f* (μ *f*) }

The original paper is formulated for polynomials, and fixed points, in many variables; but for simplicity's sake, this presentation uses single-variable polynomials.

newtype μ *f* = *Fix* { *unFix* :: *f* (μ *f*) }

This corresponds to *regular* data types because you can only do wholesale induction in the datatype definition: the *syntax* already only allows for defining non-parametric data types.

type $Puzzle1F \ \alpha = \mathbf{1} \oplus (Const \ \alpha \otimes X)$ **type** $Puzzle1 \ \alpha = \mu (Puzzle1F \ \alpha)$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

pattern Nil = pattern Cons x xs =

pattern Nil = Fix (InL 1) **pattern** Cons x xs = Fix (InR (Const $x \otimes X xs$))

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ < ○ </p>

type $Puzzle2F \alpha = Const \alpha \oplus (X \otimes X)$ **type** $Puzzle2 \quad \alpha = \mu (Puzzle2F \alpha)$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

type ParenF α = Const $\alpha \oplus (X \otimes X)$ **type** Paren $\alpha = \mu$ (ParenF α)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

pattern Leaf x = pattern Pair t1 t2 =

type ParenF α = Const $\alpha \oplus (X \otimes X)$ **type** Paren $\alpha = \mu$ (ParenF α)

pattern Leaf x = Fix (InL (Const x))**pattern** Pair t1 t2 = Fix (InR (X t1 \otimes X t2))

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

type ParenF α = Const $\alpha \oplus (X \otimes X)$ **type** Paren $\alpha = \mu$ (ParenF α)

type *Puzzle3F* $\alpha = \mathbf{1} \oplus (Const \ \alpha \otimes X \otimes X)$ **type** *Puzzle3* $\alpha = \mu (Puzzle3F \ \alpha)$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Examples!

type List $F \alpha = \mathbf{1} \oplus (Const \alpha \otimes X)$ **type** List $\alpha = \mu (List F \alpha)$

type ParenF α = Const $\alpha \oplus (X \otimes X)$ **type** Paren $\alpha = \mu$ (ParenF α)

type *BTreeF* $\alpha = \mathbf{1} \oplus (Const \ \alpha \otimes X \otimes X)$ **type** *BTree* $\alpha = \mu (BTreeF \ \alpha)$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

pattern Empty =
pattern Node x t1 t2 =

Examples!

type List $F \alpha = \mathbf{1} \oplus (Const \alpha \otimes X)$ **type** List $\alpha = \mu (List F \alpha)$

type ParenF α = Const $\alpha \oplus (X \otimes X)$ **type** Paren $\alpha = \mu$ (ParenF α)

type *BTreeF* $\alpha = \mathbf{1} \oplus (Const \ \alpha \otimes X \otimes X)$ **type** *BTree* $\alpha = \mu (BTreeF \ \alpha)$

pattern Empty = Fix (InL 1) **pattern** Node x t1 t2 = Fix (InR (Const $x \otimes X$ t1 $\otimes X$ t2))

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Without even defining what exactly we mean by a hole

(ロ)、<</p>

Without even defining what exactly we mean by a hole

- ∂ (f ⊕ g): Either we have an *InL* value with a hole, or an *InR* value with a hole: ∂ f ⊕ ∂ g
- ∂ (f ⊗ g): Either we have a hole in the first component (and the second is untouched), or the hole is in the second component: (∂ f ⊗ g) ⊕ (f ⊗ ∂ g)

What do we expect of a type for holes ∂f ?

We need to be more specific on what a hole is to continue. So let's say we want to be able to

 Get all holes into which we can plug a subtree (of the same type as the original type)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plug a subtree into a hole

class Diffable (f :: $* \to *$) where type ∂ f :: $* \to *$ holes' :: f $x \to [(\partial f x, x)]$ plug' :: ∂ f $x \to x \to f x$

What do we expect of a type for holes ∂f ?

We need to be more specific on what a hole is to continue. So let's say we want to be able to

- Get all holes into which we can plug a subtree (of the same type as the original type)
- Plug a subtree into a hole

class Diffable (f :: $* \to *$) where type ∂ f :: $* \to *$ holes' :: f $x \to [(\partial f x, x)]$ plug' :: ∂ f $x \to x \to f x$

This should give us an idea of what to do for *Const* α and *X*:

- Const α x has no possible positions (of type x):
 ∂ (Const α) = 0
- ► X x has exactly one position of type x (no further labelling needed): ∂ X = 1

type ∂ (*Const* α) = **0** type ∂ *X* = **1** type ∂ (*f* \oplus *g*) = ∂ *f* \oplus ∂ *g* type ∂ (*f* \otimes *g*) = (∂ *f* \otimes *g*) \oplus (*f* \otimes ∂ *g*)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

type
$$\partial$$
 (Const α) = 0
type ∂ X = 1
type ∂ (f \oplus g) = ∂ f \oplus ∂ g
type ∂ (f \otimes g) = (∂ f \otimes g) \oplus (f \otimes ∂ g)

Surprise! Turns out using the names *Diffable* and ∂ (and "Derivative" in the paper's title) was a reasonable choice!

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

type
$$\partial$$
 (Const α) = 0
type ∂ X = 1
type ∂ (f \oplus g) = ∂ f \oplus ∂ g
type ∂ (f \otimes g) = (∂ f \otimes g) \oplus (f \otimes ∂ g)

Surprise! Turns out using the names *Diffable* and ∂ (and "Derivative" in the paper's title) was a reasonable choice!

See the source code of the slides for the full implementation of the *Diffable* typeclass for *Const* α , *X*, *f* \oplus *g* and *f* \otimes *g*.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Making a zipper from holes

We now have a way of taking apart *one level* of an inductive data structure by having a type ∂f which has a *hole* in it.

Making a zipper from holes

We now have a way of taking apart *one level* of an inductive data structure by having a type ∂f which has a *hole* in it. We can turn this into a type *Zipper f* (a zipper for μf) by repeatedly choosing a hole and putting either one more level of data structre into it, or finishing with a μf :

type $D f = \partial f (\mu f)$ holes :: (Diffable f) $\Rightarrow \mu f \rightarrow [(D f, \mu f)]$ $holes = holes' \circ unFix$ plug :: (Diffable f) \Rightarrow D f $\rightarrow \mu$ f $\rightarrow \mu$ f plug $df = Fix \circ plug' df$ type Zipper $f = ([D f], \mu f)$ *zip* :: (*Diffable* f) \Rightarrow *Zipper* $f \rightarrow \mu f$ zip(path, t) = foldl(flip plug) t pathunzip :: (Diffable f) \Rightarrow Zipper f \rightarrow [Zipper f] unzip(dfs, t) = map(first(:dfs))(holes t)・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ Let's enumerate all possible zippers for a given container (by recursively calling *unzip*):

unzips :: (Diffable f)
$$\Rightarrow \mu$$
 f \rightarrow [Zipper f]
unzips t = go ([], t)
where
go z = z : concatMap go (unzip z)

We are going to use this to enumerate all zippers of this type:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

type $Paren \alpha = \mu (Const \alpha \oplus (X \otimes X))$ **pattern** Leaf x = Fix (InL (Const x))**pattern** $Pair t1 t2 = Fix (InR (X t1 \otimes X t2))$ Replace with a marker every possible pointed subtree:

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

probe :: $\alpha \rightarrow$ Paren $\alpha \rightarrow$ [Paren α] probe marker = map mark \circ unzips where mark (z, t) = zip (z, Leaf marker) An example parenthesization:

p :: Paren (Maybe Char)
p = (Leaf (Just 'A') 'Pair' Leaf (Just 'B')) 'Pair' (Leaf (Just 'C'))

An example parenthesization:

p :: Paren (Maybe Char)
p = (Leaf (Just 'A') 'Pair' Leaf (Just 'B')) 'Pair' (Leaf (Just 'C'))

Sac